
Contents

Preface v

1 Matrices and Systems of Equations 1

1 Systems of Linear Equations 1
2 Row Echelon Form 3
3 Matrix Arithmetic 5
4 Matrix Algebra 8
5 Elementary Matrices 15
6 Partitioned Matrices 21

MATLAB Exercises 27
Chapter Test A 29
Chapter Test B 31

2 Determinants 34

1 The Determinant of a Matrix 34
2 Properties of Determinants 37
3 Additional Topics and Applications 41

MATLAB Exercises 44
Chapter Test A 44
Chapter Test B 46

3 Vector Spaces 48

1 Definition and Examples 48
2 Subspaces 52
3 Linear Independence 58
4 Basis and Dimension 62
5 Change of Basis 64
6 Row Space and Column Space 65

MATLAB Exercises 72
Chapter Test A 74
Chapter Test B 76

4 Linear Transformations 80

1 Definition and Examples 80
2 Matrix Representations of Linear

Transformations 83
3 Similarity 86

Copyright © 2021 Pearson Education, Ltd

iii



iv Contents

MATLAB Exercise 88
Chapter Test A 89
Chapter Test B 90

5 Orthogonality 93

1 The Scalar product in Rn 93
2 Orthogonal Subspaces 96
3 Least Squares Problems 99
4 Inner Product Spaces 104
5 Orthonormal Sets 110
6 The Gram-Schmidt Process 118
7 Orthogonal Polynomials 121

MATLAB Exercises 124
Chapter Test A 125
Chapter Test B 126

6 Eigenvalues 131

1 Eigenvalues and Eigenvectors 131
2 Systems of Linear Differential Equations 137
3 Diagonalization 138
4 Hermitian Matrices 147
5 Singular Value Decomposition 155
6 Quadratic Forms 157
7 Positive Definite Matrices 162
8 Nonnegative Matrices 166

MATLAB Exercises 169
Chapter Test A 171
Chapter Test B 173

7 Numerical Linear Algebra 176

1 Floating-Point Numbers 176
2 Gaussian Elimination 177
3 Pivoting Strategies 179
4 Matrix Norms and Condition Numbers 181
5 Orthogonal Transformations 191
6 The Eigenvalue Problem 193
7 Least Squares Problems 197
8 Iterative Methods 201

MATLAB Exercises 202
Chapter Test A 203
Chapter Test B 204

8 Canonical Forms 208

1 Nilpotent Operators 208
2 The Jordan Canonical Form 210

Copyright © 2021 Pearson Education, Ltd



Preface

This solutions manual is designed to accompany the tenth edition of Linear Algebra with Applications by
Steven J. Leon and Lisette de Pillis. The manual contains the complete solutions to all of the nonroutine
exercises and Chapter test questions in the first seven chapters the book. Each of those chapters also
includes a set of MATLAB computer exercises. Most of the MATLAB computations are straightforward.
and consequently the computational results are not included in this manual. However, the MATLAB
Exercises also include questions related to the computations. The purpose of the questions is to emphasize
the significance of the computations. This manual does provide the answers to most of these questions.
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Chapter1

Matrices and
Systems

of Equations

1 SYSTEMS OF LINEAR EQUATIONS

1. (a) The solution is (4, 3).
(b) The solution is (1, 2, 7).
(c) The solution is (1, 0, −1, 2).
(d) The solution is

(
1
2 , −

1
2 ,

1
4 ,

1
3 , 0

)
.

2. (a)

 1 1

0 2


(b)


1 1 1

0 2 1

0 0 2


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2 Chapter 1 � Matrices and Systems of Equations

(c)



1 2 3 4

0 7 −1 2

0 0 1 −4

0 0 0 4



(d)



1 1 16 3 1

0 4 4 6 3

0 0 −8 27 −7

0 0 0 3 11

0 0 0 0 1


5. (a) 3x1 = 6

2x2 = 4

(b) x1 −x2 +5x3 = 8
3x1 +2x3 = 0

(c) x1 −2x2 + x3 = 4
7x1 +5x3 = 2
−3x1 +2x2 = 0

(d) x1 −2x2 −8x4 = 5
2x1 + x2 +3x3 +4x4 = 6

−3x2 + x3 − x4 = 7
8x1 +4x2 + x3 + x4 = 9

6. (a) The solution is (5, −6).
(b) The solution is (3, 7).
(c) The solution is

(
3
7 ,

4
7

)
.

(d) The solution is (1, −2, 3).
(e) The solution is (−4, 2, 5).
(f) The solution is (1, 2, −1).
(g) The solution is (0, 1, 1).
(h) The solution is (1, 2, 3, −4).

7. The solutions are (2, 3) and (3, 2).

8. The solutions are (1, 2, −1) and (2, 3, −1).

9. Given the system

−m1x1 + x2 = b1

−m2x1 + x2 = b2

one can eliminate the variable x2 by subtracting the first row from the second. One then obtains
the equivalent system

−m1x1 + x2 = b1

(m1 −m2)x1 = b2 − b1
(a) If m1 6= m2, then one can solve the second equation for x1

x1 =
b2 − b1
m1 −m2

One can then plug this value of x1 into the first equation and solve for x2. Thus, if m1 6= m2,
there will be a unique ordered pair (x1, x2) that satisfies the two equations.
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Section 2 � Row Echelon Form 3

(b) If m1 = m2, then the x1 term drops out in the second equation

0 = b2 − b1
This is possible if and only if b1 = b2.

(c) If m1 6= m2, then the two equations represent lines in the plane with different slopes. Two
nonparallel lines intersect in a point. That point will be the unique solution to the system. If
m1 = m2 and b1 = b2, then both equations represent the same line and consequently every
point on that line will satisfy both equations. If m1 = m2 and b1 6= b2, then the equations
represent parallel lines. Since parallel lines do not intersect, there is no point on both lines
and hence no solution to the system.

10. The system must be consistent since (0, 0) is a solution.

11. A linear equation in 3 unknowns represents a plane in three space. The solution set to a 3 × 3
linear system would be the set of all points that lie on all three planes. If the planes are parallel
or one plane is parallel to the line of intersection of the other two, then the solution set will be
empty. The three equations could represent the same plane or the three planes could all intersect
in a line. In either case the solution set will contain infinitely many points. If the three planes
intersect in a point, then the solution set will contain only that point.

2 ROW ECHELON FORM

2. (a) The solution is (10, 3).
(b) The system is inconsistent.
(c) The solution is (3, 0, −2).
(d) The solution set consists of all ordered triples of the form (−2α− 9, α, 3).
(e) The system is inconsistent.
(f) The solution is (0, 0, 2).

3. (a) The solution is (3, −2, 5).
(b) The solution set consists of all ordered triples of the form (α, −3, 15).
(c) The system is inconsistent.
(d) The solution set consists of all ordered triples of the form (2α+ 5, α, −1).
(e) The solution set consists of all ordered quadruples of the form (6α+ 5β, α, −3β − 6, β).
(f) The solution set consists of all ordered quadruples of the form (−2α− β, α, β, 3).

4. (a) x1, x2, and x3 are lead variables.
(b) x2 and x3 are lead variables, and x1 is a free variable.
(c) x1 and x2 are lead variables, and x3 is a free variable.
(d) x1 and x3 are lead variables, and x2 is a free variable.
(e) x1 and x3 are lead variables, and x2 and x4 are free variables.
(f) x1 and x4 are lead variables, and x2 and x3 are free variables.

5. (a) The solution is (7, −3).
(b) The system is inconsistent.
(c) The solution is (0, 0).
(d) The solution set consists of all ordered triples of the form

(
8
5α+ 9

5 , −
1
5α+ 2

5 , α
)
.

(e) The solution set consists of all ordered triples of the form
(
− 7

11α− 1, 1
11α+ 2, α

)
.

(f) The system is inconsistent.
(g) The solution is

(
−3, 4, − 1

2 , −
1
2

)
.

(h) The system is inconsistent.
(i) The solution is (−1, 2, −1).
(j) The solution set consists of all ordered quadruples of the form

(
α+ 4, 4

5α+ 2
5 , −

2
5α+ 4

5 , α
)
.

(k) The solution set consists of all ordered quadruples of the form (α− 9, −2α+ 12, α, 0).
(l) The solution set consists of all ordered triples of the form

(
− 5

3α+ 4
3 ,

4
3α+ 1

3 , α
)
.

Copyright © 2021 Pearson Education, Ltd



4 Chapter 1 � Matrices and Systems of Equations

6. (a) The solution is (1, −1).
(b) The solution set consists of all ordered quadruples of the form (1, 4− α, −1, α).
(c) The solution set consists of all ordered triples of the form

(
− 15

11α+ 6
11 ,

4
11α+ 5

11 , α
)
.

(d) The solution set consists of all ordered quadruples of the form
(
− 14

25α+ 24
25 , −

2
25α+ 7

25 , −
1
5α

+ 6
5 , α

)
.

7. A homogeneous linear equation in 3 unknowns corresponds to a plane that passes through the
origin in 3-space. Two such equations would correspond to two planes through the origin. If one
equation is a multiple of the other, then both represent the same plane through the origin and
every point on that plane will be a solution to the system. If one equation is not a multiple of the
other, then we have two distinct planes that intersect in a line through the origin. Every point on
the line of intersection will be a solution to the linear system. So in either case the system must
have infinitely many solutions.

In the case of a nonhomogeneous 2× 3 linear system, the equations correspond to planes
that do not both pass through the origin. If one equation is a multiple of the other, then both
represent the same plane and there are infinitely many solutions. If the equations represent planes
that are parallel, then they do not intersect and hence the system will not have any solutions. If
the equations represent distinct planes that are not parallel, then they must intersect in a line
and hence there will be infinitely many solutions. So the only possibilities for a nonhomogeneous
2× 3 linear system are 0 or infinitely many solutions.

8. Using Gauss–Jordan reduction to solve the system, we see that any real number a 6= −4 will give
a unique solution.

9. (a) Since the system is homogeneous it must be consistent.

13. A homogeneous system is always consistent since it has the trivial solution (0, . . . , 0). If the
reduced row echelon form of the coefficient matrix involves free variables, then there will be
infinitely many solutions. If there are no free variables, then the trivial solution will be the only
solution.

14. A nonhomogeneous system could be inconsistent in which case there would be no solutions. If the
system is consistent and underdetermined, then there will be free variables and this would imply
that we will have infinitely many solutions.

16. At each intersection, the number of vehicles entering must equal the number of vehicles leaving
in order for the traffic to flow. This condition leads to the following system of equations

x1 + a1 = x2 + b1

x2 + a2 = x3 + b2

x3 + a3 = x4 + b3

x4 + a4 = x1 + b4

If we add all four equations, we get

x1 + x2 + x3 + x4 + a1 + a2 + a3 + a4 = x1 + x2 + x3 + x4 + b1 + b2 + b3 + b4

and hence

a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

17. If (c1, c2) is a solution, then a11c1 + a12c2 = 0

a21c1 + a22c2 = 0

Multiplying both equations through by α, one obtains

a11(αc1) + a12(αc2) = α · 0 = 0

a21(αc1) + a22(αc2) = α · 0 = 0

Thus (αc1, αc2) is also a solution.
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18. (a) If x4 = 0, then x1, x2, and x3 will all be 0. Thus if no glucose is produced, then there is no
reaction. (0, 0, 0, 0) is the trivial solution in the sense that if there are no molecules of carbon
dioxide and water, then there will be no reaction.
(b) If we choose another value of x4, say x4 = 2, then we end up with solution x1 = 12, x2 = 12,
x3 = 12, x4 = 2. Note the ratios are still 6:6:6:1.

3 MATRIX ARITHMETIC

1. (e)


8 −15 11

0 −4 −3

−1 −6 6


(g)


5 −10 15

5 −1 4

8 −9 6


2. (d)

 36 10 56

10 3 16


4. (a)

 1 −2

2 4


 x1

x2

 =

 3

−6


(b)


2 1 −1

1 2 2

1 0 −1




x1

x2

x3

 =


−1

0

2


(c)


1 1 −1

2 −1 3

3 −7 9




x1

x2

x3

 =


−1

1

2


5. (a) 5A+ 2A =


5 25

0 35

10 20

+


2 10

0 14

4 8

 =


7 35

0 49

14 28


7A =


7 35

0 49

14 28


(b) 4 (2A) = 4


2 10

0 14

4 8

 =


8 40

0 56

16 32



Copyright © 2021 Pearson Education, Ltd



6 Chapter 1 � Matrices and Systems of Equations

8A =


8 40

0 56

16 32


(c) AT =

 1 0 2

5 7 4


(AT )T =

 1 0 2

5 7 4


T

=


1 5

0 7

2 4

 = A

6. (a) A+B =

 0 0 1

−1 5 3

 = B +A

(b) 2 (A+B) = 2

 0 0 1

−1 5 3

 =

 0 0 2

−2 10 6


2A+ 2B =

 2 −4 8

0 2 6

+

 −2 4 −6

−2 8 0

 =

 0 0 2

−2 10 6


(c) (A+B)

T
=

 0 0 1

−1 5 3


T

=


0 −1

0 5

1 3


AT +BT =


1 0

−2 1

4 3

+


−1 −1

2 4

−3 0

 =


0 −1

0 5

1 3



7. (a) −2 (AB) = −2


2 −13

10 −16

−4 −9

 =


−4 26

−20 32

8 18


(−2A)B =


−8 2

−12 −4

−4 6


 1 −3

2 1

 =


−4 26

−20 32

8 18


A (−2B) =


4 −1

6 2

2 −3


 −2 6

−4 −2

 =


−4 26

−20 32

8 18


(b) (AB)

T
=


2 −13

10 −16

−4 −9


T

=

 2 10 −4

−13 −16 −9


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Section 3 � Matrix Arithmetic 7

BTAT =

 1 2

−3 1


 4 6 2

−1 2 −3

 =

 2 10 −4

−13 −16 −9


8. (a) (A+B) + C =

 4 0

1 1

+

 5 7

6 4

 =

 9 7

7 5


A+ (B + C) =

 1 2

0 −1

+

 8 5

7 6

 =

 9 7

7 5


(b) (AB)C =

 5 2

−1 −2


 5 7

6 4

 =

 37 43

−17 −15


A (BC) =

 1 2

0 −1


 3 13

17 15

 =

 37 43

−17 −15


(c) A (B + C) =

 1 2

0 −1


 8 5

7 6

 =

 22 17

−7 −6


AB +AC =

 5 2

−1 −2

+

 17 15

−6 −4

 =

 22 17

−7 −6


(d) (A+B)C =

 4 0

1 1


 5 7

6 4

 =

 20 28

11 11


AC +BC =

 17 15

−6 −4

+

 3 13

17 15

 =

 20 28

11 11


9. (a) b = 2a1 + 3a2.

(b) x = (2, 3)
T

is a solution since b = 2a1 + 3a2. There are no other solutions since the echelon
form of A is strictly triangular.

(c) The solution to Ax = c is x =
(
9
5 ,

7
5

)T
. Therefore, c = 9

5a1 + 7
5a2.

11. The given information implies that

x1 =


1

1

0

 and x2 =


0

1

1


are both solutions to the system. So the system is consistent and since there is more than one
solution, the row echelon form of A must involve a free variable. A consistent system with a free
variable has infinitely many solutions.

12. The system is consistent since x = (1, 1, 1, 1)T is a solution. The system can have at most 3 lead
variables since A only has 3 rows. Therefore, there must be at least one free variable. A consistent
system with a free variable has infinitely many solutions.

13. (a) It follows from the reduced row echelon form that the free variables are x2, x4, x5. If we set
x2 = a, x4 = b, x5 = c, then

x1 = −2− 2a− 3b− c
x3 = 5− 2b− 4c
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8 Chapter 1 � Matrices and Systems of Equations

and hence the solution consists of all vectors of the form

x = (−2− 2a− 3b− c, a, 5− 2b− 4c, b, c)T

(b) If we set the free variables equal to 0, then x0 = (−2, 0, 5, 0, 0)T is a solution to Ax = b and
hence

b = Ax0 = −2a1 + 5a3 = (8,−7,−1, 7)T

14. If w3 is the weight given to professional activities, then the weights for research and teaching
should be w1 = 3w3 and w2 = 2w3. Note that

1.5w2 = 3w3 = w1,

so the weight given to research is 1.5 times the weight given to teaching. Since the weights must
all add up to 1, we have

1 = w1 + w2 + w3 = 3w3 + 2w3 + w3 = 6w3

and hence it follows that w3 = 1
6 , w2 = 1

3 , w1 = 1
2 . If C is the matrix in the example problem from

the Analytic Hierarchy Process Application, then the rating vector r is computed by multiplying
C times the weight vector w.

r = Cw =


1
2

1
5

1
4

1
4

1
2

1
2

1
4

3
10

1
4




1
2

1
3

1
6

 =


43
120

45
120

32
120


15. AT is an n ×m matrix. Since AT has m columns and A has m rows, the multiplication ATA is

possible. The multiplication AAT is possible since A has n columns and AT has n rows.

16. If A is skew-symmetric, then AT = −A. Since the (j, j) entry of AT is ajj and the (j, j) entry of
−A is −ajj , it follows that ajj = −ajj for each j and hence the diagonal entries of A must all be
0.

17. The search vector is x = (1, 0, 1, 0, 1, 0)T . The search result is given by the vector

y = ATx = (1, 2, 2, 1, 1, 2, 1)T

The ith entry of y is equal to the number of search words in the title of the ith book.

18. If α = a21/a11, then 1 0

α 1


 a11 a12

0 b

 =

 a11 a12

αa11 αa12 + b

 =

 a11 a12

a21 αa12 + b


The product will equal A provided

αa12 + b = a22

Thus we must choose

b = a22 − αa12 = a22 −
a21a12
a11

4 MATRIX ALGEBRA

1. (a) (A+B)2 = (A+B)(A+B) = (A+B)A+ (A+B)B = A2 +BA+AB +B2

For real numbers, ab+ ba = 2ab; however, with matrices AB +BA is generally not equal to
2AB.
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(b)

(A+B)(A−B) = (A+B)(A−B)

= (A+B)A− (A+B)B

= A2 +BA−AB −B2

For real numbers, ab− ba = 0; however, with matrices AB−BA is generally not equal to O.

2. If we replace a by A and b by the identity matrix, I, then both rules will work, since

(A+ I)2 = A2 + IA+AI +B2 = A2 +AI +AI +B2 = A2 + 2AI +B2

and
(A+ I)(A− I) = A2 + IA−AI − I2 = A2 +A−A− I2 = A2 − I2

3. There are many possible choices for A and B. For example, one could choose

A =

 0 1

0 0

 and B =

 1 1

0 0


More generally if

A =

 a b

ca cb

 B =

 db eb

−da −ea


then AB = O for any choice of the scalars a, b, c, d, e.

4. To construct nonzero matrices A, B, C with the desired properties, first find nonzero matrices C
and D such that DC = O (see Exercise 3). Next, for any nonzero matrix A, set B = A + D. It
follows that

BC = (A+D)C = AC +DC = AC +O = AC

5. A 2× 2 symmetric matrix is one of the form

A =

 a b

b c


Thus

A2 =

 a2 + b2 ab+ bc

ab+ bc b2 + c2


If A2 = O, then its diagonal entries must be 0.

a2 + b2 = 0 and b2 + c2 = 0

Thus a = b = c = 0 and hence A = O.

6. Let

D = (AB)C =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22


 c11 c12

c21 c22


It follows that

d11 = (a11b11 + a12b21)c11 + (a11b12 + a12b22)c21

= a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21

d12 = (a11b11 + a12b21)c12 + (a11b12 + a12b22)c22

= a11b11c12 + a12b21c12 + a11b12c22 + a12b22c22
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10 Chapter 1 � Matrices and Systems of Equations

d21 = (a21b11 + a22b21)c11 + (a21b12 + a22b22)c21

= a21b11c11 + a22b21c11 + a21b12c21 + a22b22c21

d22 = (a21b11 + a22b21)c12 + (a21b12 + a22b22)c22

= a21b11c12 + a22b21c12 + a21b12c22 + a22b22c22

If we set

E = A(BC) =

 a11 a12

a21 a22


 b11c11 + b12c21 b11c12 + b12c22

b21c11 + b22c21 b21c12 + b22c22


then it follows that

e11 = a11(b11c11 + b12c21) + a12(b21c11 + b22c21)

= a11b11c11 + a11b12c21 + a12b21c11 + a12b22c21

e12 = a11(b11c12 + b12c22) + a12(b21c12 + b22c22)

= a11b11c12 + a11b12c22 + a12b21c12 + a12b22c22

e21 = a21(b11c11 + b12c21) + a22(b21c11 + b22c21)

= a21b11c11 + a21b12c21 + a22b21c11 + a22b22c21

e22 = a21(b11c12 + b12c22) + a22(b21c12 + b22c22)

= a21b11c12 + a21b12c22 + a22b21c12 + a22b22c22

Thus
d11 = e11 d12 = e12 d21 = e21 d22 = e22

and hence
(AB)C = D = E = A(BC)

7. A2 =

 2 −1

2 −1

 , A3 =

 2 −1

2 −1

 , An =

 2 −1

2 −1

 .

9.

A2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 A3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


and A4 = O. If n > 4, then

An = An−4A4 = An−4O = O

10. (a) The matrix C is symmetric since

CT = (A+B)T = AT +BT = A+B = C

(b) The matrix D is symmetric since

DT = (AA)T = ATAT = A2 = D

(c) The matrix E = AB is not symmetric since

ET = (AB)T = BTAT = BA

and in general, AB 6= BA.
(d) The matrix F is symmetric since

FT = (ABA)T = ATBTAT = ABA = F
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(e) The matrix G is symmetric since

GT = (AB +BA)T = (AB)T + (BA)T = BTAT +ATBT = BA+AB = G

(f) The matrix H is not symmetric since

HT = (AB −BA)T = (AB)T − (BA)T = BTAT −ATBT = BA−AB = −H

11. (a) The matrix A is symmetric since

AT = (C + CT )T = CT + (CT )T = CT + C = A

(b) The matrix B is not symmetric since

BT = (C − CT )T = CT − (CT )T = CT − C = −B

(c) The matrix D is symmetric since

AT = (CTC)T = CT (CT )T = CTC = D

(d) The matrix E is symmetric since

ET = (CTC − CCT )T = (CTC)T − (CCT )T

= CT (CT )T − (CT )TCT = CTC − CCT = E

(e) The matrix F is symmetric since

FT = ((I + C)(I + CT ))T = (I + CT )T (I + C)T = (I + C)(I + CT ) = F

(e) The matrix G is not symmetric.

F = (I + C)(I − CT ) = I + C − CT − CCT

FT = ((I + C)(I − CT ))T = (I − CT )T (I + C)T

= (I − C)(I + CT ) = I − C + CT − CCT

F and FT are not the same. The two middle terms C − CT and −C + CT do not agree.

12. If d = a11a22 − a21a12 6= 0, then

1

d

 a22 −a12
−a21 a11


 a11 a12

a21 a22

 =


a11a22 − a12a21

d
0

0 a11a22 − a12a21
d

 = I

 a11 a12

a21 a22


1

d

 a22 −a12
−a21 a11


 =


a11a22 − a12a21

d
0

0 a11a22 − a12a21
d

 = I

Therefore

1

d

 a22 −a12
−a21 a11

 = A−1

13. (a)

 −
1
3

2
3

2
3 − 1

3


(b)

 5 −7

−2 3


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(c)

 −2 1

3
2 − 1

2


14. If A were nonsingular and AB = A, then it would follow that A−1AB = A−1A and hence that

B = I. So if B 6= I, then A must be singular.

15. Since

A−1A = AA−1 = I

it follows from the definition that A−1 is nonsingular and its inverse is A.

16. Since

AT (A−1)T = (A−1A)T = I

(A−1)TAT = (AA−1)T = I

it follows that

(A−1)T = (AT )−1

17. If Ax = Ay and x 6= y, then A must be singular, for if A were nonsingular, then we could multiply
by A−1 and get

A−1Ax = A−1Ay

x = y

18. For m = 1,

(A1)−1 = A−1 = (A−1)1

Assume the result holds in the case m = k, that is,

(Ak)−1 = (A−1)k

It follows that

(A−1)k+1Ak+1 = A−1(A−1)kAkA = A−1A = I

and

Ak+1(A−1)k+1 = AAk(A−1)kA−1 = AA−1 = I

Therefore

(A−1)k+1 = (Ak+1)−1

and the result follows by mathematical induction.

19. If A2 = O, then

(I +A)(I −A) = I +A−A+A2 = I

and

(I −A)(I +A) = I −A+A+A2 = I

Therefore I −A is nonsingular and (I −A)−1 = I +A.

20. If Ak+1 = O, then

(I +A+ · · ·+Ak)(I −A) = (I +A+ · · ·+Ak)− (A+A2 + · · ·+Ak+1)

= I −Ak+1 = I

and

(I −A)(I +A+ · · ·+Ak) = (I +A+ · · ·+Ak)− (A+A2 + · · ·+Ak+1)

= I −Ak+1 = I

Therefore I −A is nonsingular and (I −A)−1 = I +A+A2 + · · ·+Ak.
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21. Since

RTR =

 cos θ sin θ

− sin θ cos θ


 cos θ − sin θ

sin θ cos θ

 =

 1 0

0 1


and

RRT =

 cos θ − sin θ

sin θ cos θ


 cos θ sin θ

− sin θ cos θ

 =

 1 0

0 1


it follows that R is nonsingular and R−1 = RT

22.

G2 =

 cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

 = I

23.

H2 = (I − 2uuT )2 = I − 4uuT + 4uuTuuT

= I − 4uuT + 4u(uTu)uT

= I − 4uuT + 4uuT = I (since uTu = 1)

24. In each case, if you square the given matrix, you will end up with the same matrix.

25. (a) If A2 = A, then

(I −A)2 = I − 2A+A2 = I − 2A+A = I −A

(b) If A2 = A, then

(I − 1

2
A)(I +A) = I − 1

2
A+A− 1

2
A2 = I − 1

2
A+A− 1

2
A = I

and

(I +A)(I − 1

2
A) = I +A− 1

2
A− 1

2
A2 = I +A− 1

2
A− 1

2
A = I

Therefore I +A is nonsingular and (I +A)−1 = I − 1
2A.

26. (a)

D2 =



d211 0 · · · 0

0 d222 · · · 0

...

0 0 · · · d2nn


Since each diagonal entry of D is equal to either 0 or 1, it follows that d2jj = djj , for

j = 1, . . . , n and hence D2 = D.
(b) If A = XDX−1, then

A2 = (XDX−1)(XDX−1) = XD(X−1X)DX−1 = XDX−1 = A
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27. If A is an involution, then A2 = I and it follows that

B2 =
1

4
(I +A)2 =

1

4
(I + 2A+A2) =

1

4
(2I + 2A) =

1

2
(I +A) = B

C2 =
1

4
(I −A)2 =

1

4
(I − 2A+A2) =

1

4
(2I − 2A) =

1

2
(I −A) = C

So B and C are both idempotent.

BC =
1

4
(I +A)(I −A) =

1

4
(I +A−A−A2) =

1

4
(I +A−A− I) = O

28. (ATA)T = AT (AT )T = ATA
(AAT )T = (AT )TAT = AAT

29. Let A and B be symmetric n× n matrices. If (AB)T = AB, then

BA = BTAT = (AB)T = AB

Conversely, if BA = AB, then

(AB)T = BTAT = BA = AB

30. (a)

BT = (A+AT )T = AT + (AT )T = AT +A = B

CT = (A−AT )T = AT − (AT )T = AT −A = −C

(b) A = 1
2 (A+AT ) + 1

2 (A−AT )

34. False. For example, if

A =

 2 3

2 3

 , B =

 1 4

1 4

 , x =

 1

1


then

Ax = Bx =

 5

5


however, A 6= B.

35. False. For example, if

A =

 1 0

0 0

 and B =

 0 0

0 1


then it is easy to see that both A and B must be singular, however, A + B = I, which is
nonsingular.

36. True. If A and B are nonsingular, then their product AB must also be nonsingular. Using the
result from Exercise 23, we have that (AB)T is nonsingular and ((AB)T )−1 = ((AB)−1)T . It
follows then that

((AB)T )−1 = ((AB)−1)T = (B−1A−1)T = (A−1)T (B−1)T
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5 ELEMENTARY MATRICES

2. (a)

 0 1
1 0

, type I

(b) The given matrix is not an elementary matrix. Its inverse is given by


1
2 0

0 1
3



(c)


1 0 0

0 1 0

−5 0 1

, type III

(d)


1 0 0

0 1/5 0

0 0 1

, type II

3. (a)

 −2 0

0 2


(b)


0 0 1

0 1 0

1 0 0


(c)


1 0 0

0 1 2

0 0 1


4. (a)


1 0 0

0 2 0

0 0 1


(b)

 0 −1

−1 0


(c)


0 1 0

1 0 0

0 0 1


5. (a) E =


1 0 0

0 1 0

1 0 1


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(b) F =


1 0 −1

0 1 0

0 0 1


(c) Since

C = FB = FEA

where F and E are elementary matrices, it follows that C is row equivalent to A.

6. (a) E1 =


1 0 0

3 1 0

0 0 1

, E2 =


1 0 0

0 1 0

2 0 1

, E3 =


1 0 0

0 1 0

0 −1 1


The product U = E3E2E1A is upper triangular.

U =


2 0 4

0 3 3

0 0 7



(b) E−11 =


1 0 0

−3 1 0

0 0 1

, E−12 =


1 0 0

0 1 0

−2 0 1

, E−13 =


1 0 0

0 1 0

0 1 1


The product L = E−11 E−12 E−13 is lower triangular.

L =


1 0 0

−3 1 0

−2 1 1


7. A can be reduced to the identity matrix using three row operations 2 1

6 4

→
 2 1

0 1

→
 2 0

0 1

→
 1 0

0 1


The elementary matrices corresponding to the three row operations are

E1 =

 1 0

−3 1

 , E2 =

 1 −1

0 1

 , E3 =


1
2 0

0 1


So

E3E2E1A = I

and hence

A = E−11 E−13 E−13 =

 1 0

3 1


 1 1

0 1


 2 0

0 1


and A−1 = E3E2E1.
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8. (b)

 1 0

−1 1


 2 4

0 5



(d)


1 0 0

−2 1 0

3 −2 1




−2 1 2

0 3 2

0 0 2



9. (a)


1 0 1

3 3 4

2 2 3




1 2 −3

−1 1 −1

0 −2 3

 =


1 0 0

0 1 0

0 0 1


1 2 −3

−1 1 −1

0 −2 −3




1 0 1

3 3 4

2 2 3

 =


1 0 0

0 1 0

0 0 1



10. (e)


1 −1 0

0 1 −1

0 0 1


11. A−1 =

 4
5 − 7

5

− 1
5

3
5


(a) X = A−1B =

 1
5 4

1
5 −1


(b) Y = BA−1 =

 3
5

1
5

4
5 − 7

5


12. (b) XA+B = C

X = (C −B)A−1

=

 8 −14

−13 19


(d) XA+ C = X

XA−XI = −C
X(A− I) = −C
X = −C(A− I)−1

=

 2 −4

−3 6


13. (a) If E is an elementary matrix of type I or type II, then E is symmetric. Thus ET = E is

an elementary matrix of the same type. If E is the elementary matrix of type III formed by
adding α times the ith row of the identity matrix to the jth row, then ET is the elementary
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18 Chapter 1 � Matrices and Systems of Equations

matrix of type III formed from the identity matrix by adding α times the jth row to the ith
row.

(b) In general, the product of two elementary matrices will not be an elementary matrix. Gener-
ally, the product of two elementary matrices will be a matrix formed from the identity matrix
by the performance of two row operations. For example, if

E1 =


1 0 0

2 1 0

0 0 0

 and E2 =


1 0 0

0 1 0

2 0 1


then E1 and E2 are elementary matrices, but

E1E2 =


1 0 0

2 1 0

2 0 1


is not an elementary matrix.

14. If T = UR, then

tij =

n∑
k=1

uikrkj

Since U and R are upper triangular

ui1 = ui2 = · · · = ui,i−1 = 0

rj+1,j = rj+2,j = · · · − rnj = 0

If i > j, then

tij =

j∑
k=1

uikrkj +

n∑
k=j+1

uikrkj

=

j∑
k=1

0 rkj +

n∑
k=j+1

uik0

= 0

Therefore T is upper triangular.
If i = j, then

tjj = tij =

i−1∑
k=1

uikrkj + ujjrjj +

n∑
k=j+1

uikrkj

=

i−1∑
k=1

0 rkj + ujjrjj +

n∑
k=j+1

uik0

= ujjrjj

Therefore

tjj = ujjrjj j = 1, . . . , n
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15. If we set x = (2, 1− 4)T , then

Ax = 2a1 + 1a2 − 4a3 = 0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous system has a nonzero
solution, then it must have infinitely many solutions. In particular, if c is any scalar, then cx is
also a solution to the system since

A(cx) = cAx = c0 = 0

Since Ax = 0 and x 6= 0, it follows that the matrix A must be singular. (See Theorem 1.5.2)

16. If a1 = 3a2 − 2a3, then

a1 − 3a2 + 2a3 = 0

Therefore x = (1,−3, 2)T is a nontrivial solution to Ax = 0. It follows from Theorem 1.5.2 that
A must be singular.

17. If x0 6= 0 and Ax0 = Bx0, then Cx0 = 0 and it follows from Theorem 1.5.2 that C must be
singular.

18. If B is singular, then it follows from Theorem 1.5.2 that there exists a nonzero vector x such that
Bx = 0. If C = AB, then

Cx = ABx = A0 = 0

Thus, by Theorem 1.5.2, C must also be singular.

19. (a) If U is upper triangular with nonzero diagonal entries, then using row operation II, U can be
transformed into an upper triangular matrix with 1’s on the diagonal. Row operation III can
then be used to eliminate all of the entries above the diagonal. Thus, U is row equivalent to
I and hence is nonsingular.

(b) The same row operations that were used to reduce U to the identity matrix will transform I
into U−1. Row operation II applied to I will just change the values of the diagonal entries.
When the row operation III steps referred to in part (a) are applied to a diagonal matrix, the
entries above the diagonal are filled in. The resulting matrix, U−1, will be upper triangular.

20. SinceA is nonsingular it is row equivalent to I. Hence, there exist elementary matrices E1, E2, . . . , Ek
such that

Ek · · ·E1A = I

It follows that

A−1 = Ek · · ·E1

and

Ek · · ·E1B = A−1B = C

The same row operations that reduce A to I, will transform B to C. Therefore, the reduced row
echelon form of (A | B) will be (I | C).

21. (a) If the diagonal entries ofD1 are α1, α2, . . . , αn and the diagonal entries ofD2 are β1, β2, . . . , βn,
then D1D2 will be a diagonal matrix with diagonal entries α1β1, . . . , αnβn and D2D1 will be
a diagonal matrix with diagonal entries β1α1, β2α2, . . . , βnαn. Since the two have the same
diagonal entries, it follows that D1D2 = D2D1.

(b)

AB = A(a0I + a1A+ · · ·+ akA
k)

= a0A+ a1A
2 + · · ·+ akA

k+1

= (a0I + a1A+ · · ·+ akA
k)A

= BA
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22. If A is symmetric and nonsingular, then

(A−1)T = (A−1)T (AA−1) = ((A−1)TAT )A−1 = A−1

23. If A is row equivalent to B, then there exist elementary matrices E1, E2, . . . , Ek such that

A = EkEk−1 · · ·E1B

Each of the Ei’s is invertible and E−1i is also an elementary matrix (Theorem 1.4.1). Thus

B = E−11 E−12 · · ·E
−1
k A

and hence B is row equivalent to A.

24. (a) If A is row equivalent to B, then there exist elementary matrices E1, E2, . . . , Ek such that

A = EkEk−1 · · ·E1B

Since B is row equivalent to C, there exist elementary matrices H1, H2, . . . ,Hj such that

B = HjHj−1 · · ·H1C

Thus
A = EkEk−1 · · ·E1HjHj−1 · · ·H1C

and hence A is row equivalent to C.
(b) If A and B are nonsingular n × n matrices, then A and B are row equivalent to I. Since A

is row equivalent to I and I is row equivalent to B, it follows from part (a) that A is row
equivalent to B.

25. If U is any row echelon form of A, then A can be reduced to U using row operations, so A is row
equivalent to U . If B is row equivalent to A, then it follows from the result in Exercise 24(a) that
B is row equivalent to U .

26. If B is row equivalent to A, then there exist elementary matrices E1, E2, . . . , Ek such that

B = EkEk−1 · · ·E1A

Let M = EkEk−1 · · ·E1. The matrix M is nonsingular since each of the Ei’s is nonsingular.
Conversely, suppose there exists a nonsingular matrix M such that B = MA. Since M is

nonsingular, it is row equivalent to I. Thus, there exist elementary matrices E1, E2, . . . , Ek such
that

M = EkEk−1 · · ·E1I

It follows that
B = MA = EkEk−1 · · ·E1A

Therefore, B is row equivalent to A.

27. If A is nonsingular, then A is row equivalent to I. If B is row equivalent to A, then using the
result from Exercise 24(a), we can conclude that B is row equivalent to I. Therefore, B must be
nonsingular. So it is not possible for B to be singular and also be row equivalent to a nonsingular
matrix.

28. (a) The system V c = y is given by

1 x1 x21 · · · xn1

1 x2 x22 · · · xn2
...

1 xn+1 x2n+1 · · · xnn+1





c1

c2
...

cn+1


=



y1

y2
...

yn+1


Comparing the ith row of each side, we have

c1 + c2xi + · · ·+ cn+1x
n
i = yi
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Thus

p(xi) = yi i = 1, 2, . . . , n+ 1

(b) If x1, x2, . . . , xn+1 are distinct and V c = 0, then we can apply part (a) with y = 0. Thus if
p(x) = c1 + c2x+ · · ·+ cn+1x

n, then

p(xi) = 0 i = 1, 2, . . . , n+ 1

The polynomial p(x) has n + 1 roots. Since the degree of p(x) is less than n + 1, p(x) must
be the zero polynomial. Hence

c1 = c2 = · · · = cn+1 = 0

Since the system V c = 0 has only the trivial solution, the matrix V must be nonsingular.

29. True. If A is row equivalent to I, then A is nonsingular, so if AB = AC, then we can multiply
both sides of this equation by A−1.

A−1AB = A−1AC

B = C

30. True. If E and F are elementary matrices, then they are both nonsingular and the product of
two nonsingular matrices is a nonsingular matrix. Indeed, G−1 = F−1E−1.

31. True. If a + a2 = a3 + 2a4, then

a + a2 − a3 − 2a4 = 0

If we let x = (1, 1,−1,−2)T , then x is a solution to Ax = 0. Since x 6= 0 the matrix A must be
singular.

32. False. Let I be the 2× 2 identity matrix and let A = I, B = −I, and

C =

 2 0

0 1


Since B and C are nonsingular, they are both row equivalent to A; however,

B + C =

 1 0

0 0


is singular, so it cannot be row equivalent to A.

6 PARTITIONED MATRICES

2. B = ATA =



aT1

aT2
...

aTn


(a1,a2, . . . ,an) =



aT1 a1 aT1 a2 · · · aT1 an

aT2 a1 aT2 a2 · · · aT2 an
...

aTna1 aTna2 · · · aTnan


3. (a) Ab1 =

 5

−5

, Ab2 =

 3

4


(b) −→a1B =

 5 3

, −→a2B =
 −5 4


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(c) AB =

 5 3

−5 4



4. (a)

 O I

I O


 B11 B12

B21 B22

 =

 B21 B22

B11 B12

 =



1 0 0 1

2 1 1 3

1 2 3 1

1 2 0 0



(b)

 C O

O C


 B11 B12

B21 B22

 =

 CB11 CB12

CB21 CB22

 =



0 0 3 1

0 0 −3 −1

−1 −1 −1 −2

1 1 1 2



(c)

 D O

O I


 B11 B12

B21 B22

 =

 DB11 DB12

B21 B22

 =



3 6 9 3

3 6 0 0

1 0 0 1

2 1 1 3



(d)

 E O

O E


 B11 B12

B21 B22

 =

 EB11 EB12

EB21 EB22

 =



1 2 0 0

1 2 3 1

2 1 1 3

1 0 0 1



5. (a)

 2 −1 3

4 −1 0




1 2 4

2 1 1

4 0 1

+

 1

2

 1 0 2

 =

 13 3 12

4 7 19



(b)



1 2

2 1

4 0

1 0


 2 −1 3 1

4 −1 0 2

 =



10 −3 3 5

8 −3 6 4

8 −4 12 4

2 −1 3 1


(c) Let

A11 =


1
4

3
4

−3
4

1
4

A12 =

 0 0

0 0


A21 =

 0 0

A22 =
 1 1


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The block multiplication is performed as follows:
A11 A12

A21 A22




AT11 AT21

AT12 AT22

 =


A11A

T
11 +A12A

T
12 A11A

T
21 +A12A

T
22

A21A
T
11 +A22A

T
12 A21A

T
21 +A22A

T
22



=


5
8 0 0

0 5
8 0

0 0 2



(d)



0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0





1 0

2 −9

3 −8

4 −7

5 −6


=



3 −8

2 −9

1 0

5 −6

4 −7


6. (a)

XY T = x1y
T
1 + x2y

T
2 + x3y

T
3

=

 2

1

 1 4

+

 1

0

 3 1

+

 4

1

 1 4


=

 2 8

1 4

+

 3 1

0 0

+

 4 16

1 4


(b) Since yjx

T
j = (xjy

T
j )T for j = 1, 2, 3, the outer product expansion of Y XT is just the

transpose of the outer product expansion of XY T . Thus,

Y XT = y1x
T
1 + y2x

T
2 + y3x

T
3

=

 2 1

8 4

+

 3 0

1 0

+

 4 1

16 4


7. It is possible to perform both block multiplications. To see this, suppose A11 is a k × r matrix,

A12 is a k× (n−r) matrix, A21 is an (m−k)×r matrix and A22 is (m−k)× (n−r). It is possible
to perform the block multiplication of AAT since the matrix multiplications A11A

T
11, A11A

T
21,

A12A
T
12, A12A

T
22, A21A

T
11, A21A

T
21, A22A

T
12, A22A

T
22 are all possible. It is possible to perform the

block multiplication of ATA since the matrix multiplications AT11A11, AT11A12, AT21A21, AT21A11,
AT12A12, AT22A21, AT22A22 are all possible.

8. AX = A(x1,x2, . . . ,xr) = (Ax1, Ax2, . . . , Axr)
B = (b1,b2, . . . ,br)
AX = B if and only if the column vectors of AX and B are equal

Axj = bj j = 1, . . . , r

Copyright © 2021 Pearson Education, Ltd



24 Chapter 1 � Matrices and Systems of Equations

9. (a) Since D is a diagonal matrix, its jth column will have djj in the jth row and the other entries
will all be 0. Thus dj = djjej for j = 1, . . . , n.

(b)

AD = A(d11e1, d22e2, . . . , dnnen)

= (d11Ae1, d22Ae2, . . . , dnnAen)

= (d11a1, d22a2, . . . , dnnan)

10. (a)

UΣ =

U1 U2


Σ1

O

 = U1Σ1 + U2O = U1Σ1

(b) If we let X = UΣ, then

X = U1Σ1 = (σ1u1, σ2u2, . . . , σnun)

and it follows that

A = UΣV T = XV T = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n

11. 
A−111 C

O A−122




A11 A12

O A22

 =


I A−111 A12 + CA22

O I


If

A−111 A12 + CA22 = O

then

C = −A−111 A12A
−1
22

Let

B =


A−111 −A−111 A12A

−1
22

O A−122


Since AB = BA = I, it follows that B = A−1.

12. Let 0 denote the zero vector in Rn. If A is singular, then there exists a vector x1 6= 0 such that
Ax1 = 0. If we set

x =

 x1

0


then

Mx =

 A O

O B


 x1

0

 =

 Ax1 +O0

Ox1 +B0

 =

 0

0


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By Theorem 1.5.2, M must be singular. Similarly, if B is singular, then there exists a vector
x2 6= 0 such that Bx2 = 0. So if we set

x =

 0

x2


then x is a nonzero vector and Mx is equal to the zero vector.

15.

A−1 =

O I

I −B

 , A2 =

 I B

B I

 , A3 =

B I

I 2B


and hence

A−1 +A2 +A3 =

 I +B 2I +B

2I +B I +B


16. The block form of S−1 is given by

S−1 =

 I −A

O I


It follows that

S−1MS =

 I −A

O I


AB O

B O


 I A

O I


=

 I −A

O I


AB ABA

B BA


=

O O

B BA


17. The block multiplication of the two factors yields I O

B I


 A11 A12

O C

 =

 A11 A12

BA11 BA12 + C


If we equate this matrix with the block form of A and solve for B and C, we get

B = A21A
−1
11 and C = A22 −A21A

−1
11 A12

To check that this works note that

BA11 = A21A
−1
11 A11 = A21

BA12 + C = A21A
−1
11 A12 +A22 −A21A

−1
11 A12 = A22
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and hence  I O

B I


 A11 A12

O C

 =

 A11 A12

A21 A22

 = A

18. In order for the block multiplication to work, we must have

XB = S and YM = T

Since both B and M are nonsingular, we can satisfy these conditions by choosing X = SB−1 and
Y = TM−1.

19. (a)

BC =



b1

b2
...

bn


(c) =



b1c

b2c

...

bnc


= cb

(b)

Ax = (a1,a2, . . . ,an)



x1

x2
...

xn


= a1(x1) + a2(x2) + · · ·+ an(xn)

(c) It follows from parts (a) and (b) that

Ax = a1(x1) + a2(x2) + · · ·+ an(xn)

= x1a1 + x2a2 + · · ·+ xnan

20. If Ax = 0 for all x ∈ Rn, then

aj = Aej = 0 for j = 1, . . . , n

and hence A must be the zero matrix.

21. If

Bx = Cx for all x ∈ Rn

then

(B − C)x = 0 for all x ∈ Rn

It follows from Exercise 20 that

B − C = O

B = C

22. (a)  A−1 0

−cTA−1 1


A a

cT β


 x

xn+1

 =

 A−1 0

−cTA−1 1


 b

bn+1


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 I A−1a

0T −cTA−1a + β


 x

xn+1

 =

 A−1b

−cTA−1b + bn+1


(b) If

y = A−1a and z = A−1b

then
(−cTy + β)xn+1 = −cT z + bn+1

xn+1 =
−cT z + bn+1

−cTy + β
(β − cTy 6= 0)

and
x + xn+1A

−1a = A−1b

x = A−1b− xn+1A
−1a = z− xn+1y

MATLAB EXERCISES
1. In parts (a) and (c), it should turn out that A1 = A4 and A2 = A3. In part (b) and (d), A1 = A3

and A2 = A4. Exact equality might not occur in parts (c) and (d) because of roundoff error.

2. The solution x obtained using the \ operation will be more accurate and yield the smaller residual
vector. The computation of x is also more efficient since the solution is computed using Gaussian
elimination with partial pivoting and this involves less arithmetic than computing the inverse
matrix and multiplying it times b.

3. (a) Since Ax = 0 and x 6= 0, it follows from Theorem 1.5.2 that A is singular.
(b) The columns of B are all multiples of x. Indeed,

B = (x, 2x, 3x, 4x, 5x, 6x)

and hence
AB = (Ax, 2Ax, 3Ax, 4Ax, 5Ax, 6Ax) = O

(c) If D = B + C, then
AD = AB +AC = O +AC = AC

4. By construction, B is upper triangular with diagonal entries are all equal to 1. Thus, B is row
equivalent to I, and, hence, B is nonsingular. If one changes B by setting b9,1 = −1/128 and
computes Bx, the result is the zero vector. Since x 6= 0, the matrix B must be singular.

5. (a) Since A is nonsingular, its reduced row echelon form is I. If E1, . . . , Ek are elementary
matrices such that Ek · · ·E1A = I, then these same matrices can be used to transform
(A b) to its reduced row echelon form U . It follows then that

U = Ek · · ·E1(A b) = A−1(A b) = (I A−1b)

Thus, the last column of U should be equal to the solution x of the system Ax = b.
(b) After the third column of A is changed, the new matrix A is now singular. Examining the

last row of the reduced row echelon form of the augmented matrix (A b), we see that the
system is inconsistent.

(c) The system Ax = c is consistent since y is a solution. There is a free variable x3, so the
system will have infinitely many solutions.

(f) The vector v is a solution since

Av = A(w + 3z) = Aw + 3Az = c

For this solution, the free variable x3 = v3 = 3. To determine the general solution just set
x = w + tz. This will give the solution corresponding to x3 = t for any real number t.

6. (c) There will be no walks of even length from Vi to Vj whenever i+ j is odd.
(d) There will be no walks of length k from Vi to Vj whenever i+ j + k is odd.
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(e) The conjecture is still valid for the graph containing the additional edges.
(f) If the edge {V6, V8} is included, then the conjecture is no longer valid. There is now a walk

of length 1 from V6 to V8 and i+ j + k = 6 + 8 + 1 is odd.

8. The change in part (b) should not have a significant effect on the survival potential for the turtles.
The change in part (c) will effect the (2, 2) and (3, 2) of the Leslie matrix. The new values for
these entries will be l22 = 0.9540 and l32 = 0.0101. With these values, the Leslie population model
should predict that the survival period will double but the turtles will still eventually die out.

9. (b) x1 = c− V x2.
10. (a)

A2k =

 I kB

kB I


This can be proved using mathematical induction. In the case k = 1

A2 =

O I

I B


O I

I B

 =

 I B

B I


If the result holds for k = m

A2m =

 I mB

mB I


then

A2m+2 = A2A2m

=

 I B

B I


 I mB

mB I


=

 I (m+ 1)B

(m+ 1)B I


It follows by mathematical induction that the result holds for all positive integers k.

(b)

A2k+1 = AA2k =

O I

I B


 I kB

kB I

 =

 kB I

I (k + 1)B


11. (a) By construction, the entries of A were rounded to the nearest integer. The matrix B = ATA

must also have integer entries and it is symmetric since

BT = (ATA)T = AT (AT )T = ATA = B
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