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Preface

This solutions manual is designed to accompany the tenth edition of Linear Algebra with Applications by
Steven J. Leon and Lisette de Pillis. The manual contains the complete solutions to all of the nonroutine
exercises and Chapter test questions in the first seven chapters the book. Each of those chapters also
includes a set of MATLAB computer exercises. Most of the MATLAB computations are straightforward.
and consequently the computational results are not included in this manual. However, the MATLAB
Exercises also include questions related to the computations. The purpose of the questions is to emphasize
the significance of the computations. This manual does provide the answers to most of these questions.
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Chapterl

Matrices and
Systems
of Equations

SYSTEMS OF LINEAR EQUATIONS

1. (a) The solution is (4, 3).

(b) The solution is (1, 2, 7).

(¢) The solution is (1, 0, —1, 2).

(d) The solution is (2, f% 411 1, 0).
11

2. (a)

0 2
1 11

(b)) 10 2 1
0 0 2
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Chapter 1 o Matrices and Systems of Equations

1 2 3 4
0o 7 -1 2
(c)
0 0 1 —4
0 0 0 4
1 1 16 3 1
0 4 4 6 3
(d) 0 0 —8 27 -7
0 0 0o 3 11
0 0 0 O 1
5. (a) 3x; =6
2.’1?2 =4
(b) 1 —me +bxz=
3.’,E1 +2I3 =
(c) 1 —2x9 + x3 =4
Tx1 +5r3 =
—3x1 +2z9 =0
(d) X1 —2562 —81’4 =5
2r1 + xo +3x3 +4x4 =06
—3.132 + Tr3 — T4 — 7

8r1 +4ry + 3 + x4 =9

6. (a) The solution is (5, —6).
(b) The solution is (3, 7).
(¢) The solution is (2, 2).
(d) The solution is (1, —2, 3).
(e) The solution is (—4, 2, 5).
(f) The solution is (1, 2, —1).
(g) The solution is (0, 1, 1).
(h) The solution is (1, 2, 3, —4)

7. The solutions are (2, 3) and (3, 2).
The solutions are (1, 2, —1) and (2, 3, —1).
9. Given the system

®

—mix1 + 22 = bl
—MoX1 + Lo = b2
one can eliminate the variable zo by subtracting the first row from the second. One then obtains
the equivalent system
—M1x1 + T2 = b1
(m1 — m2)1‘1 = b2 — bl
(a) If my # mo, then one can solve the second equation for x;
by — by
T = —
mip — Mo

One can then plug this value of z; into the first equation and solve for xo. Thus, if my # ma,
there will be a unique ordered pair (x1,x2) that satisfies the two equations.
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10.
11.

Section 2 e Row Echelon Form 3

(b) If my = mq, then the z; term drops out in the second equation
0 = bQ - b1

This is possible if and only if by = bs.

(¢) If my # ma, then the two equations represent lines in the plane with different slopes. Two
nonparallel lines intersect in a point. That point will be the unique solution to the system. If
m1 = meo and b; = by, then both equations represent the same line and consequently every
point on that line will satisfy both equations. If m; = mo and b; # by, then the equations
represent parallel lines. Since parallel lines do not intersect, there is no point on both lines
and hence no solution to the system.

The system must be consistent since (0, 0) is a solution.

A linear equation in 3 unknowns represents a plane in three space. The solution set to a 3 x 3
linear system would be the set of all points that lie on all three planes. If the planes are parallel
or one plane is parallel to the line of intersection of the other two, then the solution set will be
empty. The three equations could represent the same plane or the three planes could all intersect
in a line. In either case the solution set will contain infinitely many points. If the three planes
intersect in a point, then the solution set will contain only that point.

ROW ECHELON FORM

2.

The solution is (10, 3).

The system is inconsistent.

The solution is (3, 0, —2).

The solution set consists of all ordered triples of the form (—2a — 9, «, 3).

The system is inconsistent.

The solution is (0, 0, 2).

The solution is (3, —2, 5).

The solution set consists of all ordered triples of the form («, —3, 15).

The system is inconsistent.

The solution set consists of all ordered triples of the form (2o + 5, «, —1).

The solution set consists of all ordered quadruples of the form (6 + 58, «, —35 — 6, S).
The solution set consists of all ordered quadruples of the form (—2a — 8, «, 8, 3).
1,22, and x3 are lead variables.

r9 and x3 are lead variables, and x1 is a free variable.

x1 and x5 are lead variables, and x3 is a free variable.

x1 and x3 are lead variables, and x5 is a free variable.

x1 and x3 are lead variables, and x5 and x4 are free variables.

x1 and x4 are lead variables, and xo and x3 are free variables.

The solution is (7, —3).

The system is inconsistent.

The solution is (0, 0).

The solution set consists of all ordered triples of the form (
The solution set consists of all ordered triples of the form (
The system is inconsistent.

The solution is (73, 4, f%, f%)

The system is inconsistent.

The solution is (—1, 2, —1).

The solution set consists of all ordered quadruples of the form (a + 4, %a + %, 2o+
The solution set consists of all ordered quadruples of the form (o — 9, —2a + 12, a,
The solution set consists of all ordered triples of the form (—2a+ 3, ja+ 3, ).

— — — — — — —~ — —
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Chapter 1 o Matrices and Systems of Equations

6.

14.

16.

17.

(a) The solution is (1, —1).

b) The solution set consists of all ordered quadruples of the form (1, 4 — o, —1, «).

(c) The solution set consists of all ordered triples of the form (—Pa + £, %a + &, ).
(d)

d) The solution set consists of all ordered quadruples of the form (—%a + %, —2—25a + %, —%a

—I—g, a).

A homogeneous linear equation in 3 unknowns corresponds to a plane that passes through the
origin in 3-space. Two such equations would correspond to two planes through the origin. If one
equation is a multiple of the other, then both represent the same plane through the origin and
every point on that plane will be a solution to the system. If one equation is not a multiple of the
other, then we have two distinct planes that intersect in a line through the origin. Every point on
the line of intersection will be a solution to the linear system. So in either case the system must
have infinitely many solutions.

In the case of a nonhomogeneous 2 x 3 linear system, the equations correspond to planes
that do not both pass through the origin. If one equation is a multiple of the other, then both
represent the same plane and there are infinitely many solutions. If the equations represent planes
that are parallel, then they do not intersect and hence the system will not have any solutions. If
the equations represent distinct planes that are not parallel, then they must intersect in a line
and hence there will be infinitely many solutions. So the only possibilities for a nonhomogeneous
2 x 3 linear system are 0 or infinitely many solutions.

. Using Gauss—Jordan reduction to solve the system, we see that any real number a # —4 will give

a unique solution.

. (a) Since the system is homogeneous it must be consistent.
13.

A homogeneous system is always consistent since it has the trivial solution (0,...,0). If the
reduced row echelon form of the coefficient matrix involves free variables, then there will be
infinitely many solutions. If there are no free variables, then the trivial solution will be the only
solution.

A nonhomogeneous system could be inconsistent in which case there would be no solutions. If the
system is consistent and underdetermined, then there will be free variables and this would imply
that we will have infinitely many solutions.

At each intersection, the number of vehicles entering must equal the number of vehicles leaving
in order for the traffic to flow. This condition leads to the following system of equations

r1ta = ra+h
T +azy = w3+ bo
T3 +az = T4+ by
rytay = 21+ by
If we add all four equations, we get
T1+xa+x3+ratart+artaztas=x1+r2+x3+24+b1+ba+03+0bs

and hence
a1+a2+a3+a4:b1+b2+bg+b4
If (c1, c2) is a solution, then 41101 + a19¢s = 0
agicy + azca = 0
Multiplying both equations through by «, one obtains
a1 (aer) + apa(acs) = a-0=0
a1 (aer) + aza(ac) = a-0=0

Thus (acy, acs) is also a solution.
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Section 3 e Matrix Arithmetic 5

18. (a) If z4 = 0, then x1, 29, and x3 will all be 0. Thus if no glucose is produced, then there is no
reaction. (0,0,0,0) is the trivial solution in the sense that if there are no molecules of carbon
dioxide and water, then there will be no reaction.

(b) If we choose another value of x4, say x4 = 2, then we end up with solution z; = 12, x5 = 12,
r3 = 12, x4 = 2. Note the ratios are still 6:6:6:1.

MATRIX ARITHMETIC

8 —15 11
1. (e) 0 -4 -3
-1 -6 6
5 —10 15
(&) | 5 -1 4
8 -9 6
2. (@) 36 10 56]
10 3 16
co [ (2)-L 1)
2 4 To —6
2 1 -1 T -1
Mm) | 1 2 2] | = 0
1 0 —1 T3 2
1 1 -1 T —1
() | 2 -1 3] T [ 1
3 =7 9 T3 2
5 25 2 10 7 35
5. (a) 5A+2A=| 0 35 [+] 0 14 | =] 0 49
10 20 4 8 14 28
7 35
TA=1| 0 49
14 28
2 10 8 40
(b) 42A)=4]1 0 14 | =] 0 56
4 8 16 32
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8
8A = 0

16
ar— |}

5
(AT)T: [
A+ B =

(—24)B =

0

40
56
32
0 2
7 4
T 1 5
0 2
5 7 4
4
0 0 1
_B+A
-1 5 3
0 0 1 0O 0 2
-1 5 3 -2 10 6

—4 8 N -2 4 -6 0 0 2
2 6 -2 8 0 -2 10 6
T 0 -1
0 0 1
=10 5
-1 5 3
1 3
1 0 -1 -1 0 -1
2 1|+ 2 4 1 =10 5)
4 3 -3 0 1 3

10 —-16 | = | —20 32
-4 -9 8 18
-8 2 —4 26
1 -3
—-12 -4 = —-20 32
2 1
—4 6 8 18
-1 —4 26
-2 6
2 =1 =20 32
-4 -2
-3 8 18
T
—13
2 10 —4
—16 =
-13 -16 -9
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12.

13.

Section 3 e Matrix Arithmetic 7

2] [8 5] [9 7]
A+(B+C) = + =
0 —1 7 6 75
5 2] [5 7] [ 37 43]
(b) (AB)C = -
1 -2 6 4 17 —15
1 2] [ 3 13] [ 37 43]
A(BC) = -
0 —1 17 15 17 —15
P 8 5 22 17
S [EF R
0 —1 76 7 —6
5 2] [ 17 15] [ 29 17]
AB + AC = _
1 -2 6 —4 7 -6
40 5 7 20 28
e IR
11 6 4 11 11
17 15] [313] [2028]
AC + BC =
6 —4 17 15 1 11

(a) b =2a; + 3as.
(b) x = (2, 3)7 is a solution since b = 2a; + 3ay. There are no other solutions since the echelon
form of A is strictly triangular.

(¢) The solution to Ax = ¢ is x = (2, %)T Therefore, ¢ = 2a; + La,.

The given information implies that

1 0
x1=1]1 and x9= | 1
0 1

are both solutions to the system. So the system is consistent and since there is more than one
solution, the row echelon form of A must involve a free variable. A consistent system with a free
variable has infinitely many solutions.

The system is consistent since x = (1,1,1,1)" is a solution. The system can have at most 3 lead
variables since A only has 3 rows. Therefore, there must be at least one free variable. A consistent

system with a free variable has infinitely many solutions.

)T

(a) It follows from the reduced row echelon form that the free variables are xa, x4, x5. If we set
To = a, x4 = b, x5 = ¢, then

1 = —2—2a—3b—c¢
r3 = 5—2b—4c

Copyright (©) 2021 Pearson Education, Ltd



8 Chapter 1 o Matrices and Systems of Equations

14.

15.

16.

17.

18.

and hence the solution consists of all vectors of the form
x=(-2-2a—3b—c,a,5—2b—4c, b, c)T

(b) If we set the free variables equal to 0, then xo = (—2,0,5,0,0)7 is a solution to Ax = b and
hence

b = Axg = —2a; + bag = (8, -7, —1,7)7

If ws is the weight given to professional activities, then the weights for research and teaching
should be w; = 3ws and wy = 2ws. Note that

1.511)2 = 311}3 = wq,

so the weight given to research is 1.5 times the weight given to teaching. Since the weights must
all add up to 1, we have

1:w1+w2+w3:3w3+2w3+w3:6w3

and hence it follows that wz = %, Wy = %, wy = % If C' is the matrix in the example problem from

the Analytic Hierarchy Process Application, then the rating vector r is computed by multiplying
C times the weight vector w.

11 1 1 43
2 5 4 2 120
r=Cw= |1 1 1 1]l =145
4 2 2 3 120
1 3 1 1 32
4 10 14 6 120

AT is an n x m matrix. Since A7 has m columns and A has m rows, the multiplication AT A is
possible. The multiplication AA” is possible since A has n columns and AT has n rows.

If A is skew-symmetric, then AT = —A. Since the (j,j) entry of AT is a;; and the (4, j) entry of
—Ais —ajj, it follows that aj; = —a;; for each j and hence the diagonal entries of A must all be
0.

The search vector is x = (1,0,1,0,1,0)7. The search result is given by the vector
y=ATx=(1,2,2,1,1,2, )T

The ith entry of y is equal to the number of search words in the title of the ith book.
Ifa= a21/a11, then

1 0 ann a1z | an a2 | an aiz
a 1 0 b aay;  aae +b as1  «ais+b

The product will equal A provided
aar2 + b = as2

Thus we must choose

b— N 210412
= Q22 — Qa2 =022 — ———

a1

4 | MATRIX ALGEBRA

1.

(a) (A+B)>=(A+B)(A+B)=(A+B)A+ (A+B)B=A?+ BA+ AB + B?
For real numbers, ab + ba = 2ab; however, with matrices AB + BA is generally not equal to
2AB.

Copyright (©) 2021 Pearson Education, Ltd



Section 4 o Matriz Algebra 9

(A+ B)(A-B)

(A+ B)(A— B)
= (A+B)A— (A+B)B
— A’+ BA— AB - B?

For real numbers, ab — ba = 0; however, with matrices AB — BA is generally not equal to O.
. If we replace a by A and b by the identity matrix, I, then both rules will work, since

(A+1)?=A*+ JA+ Al +B*= A + Al + AT + B? = A + 2A1 + B?

and
(A+DA-D)=A2 4+ TA—AI -1’ =A2+ A-A-T*=A%_-T?

. There are many possible choices for A and B. For example, one could choose

0 1 1 1
A= and B=
0 0 0 0
More generally if
a b db eb
A == B =
ca cb —da —ea

then AB = O for any choice of the scalars a, b, ¢, d, e.

. To construct nonzero matrices A, B, C' with the desired properties, first find nonzero matrices C'
and D such that DC' = O (see Exercise 3). Next, for any nonzero matrix A, set B = A+ D. It
follows that

BC=(A+D)C=AC+DC=AC+0=AC

. A 2 x 2 symmetric matrix is one of the form

A:

Thus

2 a?+ 0% ab+be

ab+bc b*+c?
If A%2 = O, then its diagonal entries must be 0.
a?+bv°=0 and b’ +F=0
Thus a = b =c¢ =0 and hence A = O.

. Let

ai1b11 + a12b ai1b1a + a12b c c
D = (AB)C = 11011 12021 11012 12 22] [ 11 12]

a21b11 + a22b21 a21b12 + a22b22 C21 C22

It follows that
di1 = (a11bi1 + ai2ba1)ci1 + (ar1biz + a12b22)can
= anbiicin + aigbaicii + ar1biacar + ar2baacor
di2 = (a11b11 + a12b21)c12 + (@11b12 + a12b22)coo

= anbiiciz + aizbaicia + a11bi2ca + a12b22ca2
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10 Chapter 1 o Matrices and Systems of Equations

do1 = (a21b11 + a22ba1)ci1 + (@21b12 + a22b22)can
= anibiicin + agzbaicii + az1biaca1 + azebaacor
doa = (a21b11 + agebai)ciz + (ag1biz + agebaz)cor

ag1biici2 + azabaicia + azibiacas + azabaaca

If we set

E = A(BC) =

as1 22 barciy + bazcar  barcia + bazean

a1 a2 ] [ biici1 + biacan biici2 + biacan

then it follows that

e11 = api(biici + biacor) + ara(barciy + bazean)

= anbiicir +arrbiacar + azbarcir + a1abazcar
e12 = ai1(biiciz + biacaz) + arz(baiciz + baacon)

= an1biicia +aribiacas + a1abaicia + arabaacon
ea1 = az1(bricin + biacar) + azz(barcin + bazcor)

= ag1bircin + az1biacar + agzbarcir + aszbazcar
ez2 = ag1(biiciz + bizcaz) + azz(baicia + bazcoa)

= ag1bi1ci2 + ag1bi2coa + agabaiciz 4 azabaacas

Thus
din =en di2 = eq2 doy = e doo = €2
and hence
(AB)C =D = E = A(BC)
2 -1 2 -1 2 -1
7. A% = , A3 = , A" =
2 -1 2 -1 2 -1
9.
0 0 1 0 0 0 0 1
> |0 0 01 5 |00 00
A7 = 00 0 O AT = 00 0 O
00 0 0 00 0 O

and A* = O. If n > 4, then
AT =A"HAY = A0 =0

10. (a) The matrix C is symmetric since
CT=A+B)"'=AT+B"=A+B=C
(b) The matrix D is symmetric since
DT = (AA)T = ATAT = A2 =D
(¢) The matrix £ = AB is not symmetric since
ET = (AB)T = BTAT = BA

and in general, AB # BA.
(d) The matrix F' is symmetric since

FT = (ABA)T = ATBTAT = ABA=F
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(e) The matrix G is symmetric since
GT = (AB+ BA)T = (AB)" + (BA)YY = BTAT + ATBT = BA+ AB=G
(f) The matrix H is not symmetric since
H" = (AB — BA)" = (AB)" — (BA)" = BTAT —ATB" = BA—- AB=-H
11. (a) The matrix A is symmetric since
At=Cc+ch)'=c"+(CNH"=Cc"+Cc=4
(b) The matrix B is not symmetric since
Bl =cCc-chHT=c? - (c"Y'=0"-C=-B
(¢) The matrix D is symmetric since
AT =Tyl =cT(chY' =cTc =D
(d) The matrix E is symmetric since
ET = (cTc—-cch)T = (cTo)T — (cc™)T
=crehHr—(ehH'er=c"c-cc"t =E
(e) The matrix F' is symmetric since
Fl=(I+0)I+C")Y'=1+CcHT1+0)" =T +0C)I+CT)=F
(e) The matrix G is not symmetric.
F={J+0)I-C"=1+C-CcT-cC”
FI = (1+o0)-oc")Yr=1-ch)Ta+o)”
=(I-O){I+cNy=1-Cc+CcT-ccT

F and FT are not the same. The two middle terms C — C” and —C 4+ C7 do not agree.
12. If d = a11a22 — A21Q12 75 O, then

411022 — A12021 0

d
1 az2 —ai2 ail a2 _ _7
y B = =
@21 11 @21 @22 G11022 — A12021
0 d
a11a22 5 12021 0
[ ail a2 ] [1 a2 —ai2 _ _7
y = =
a2 a2 —a21 ail
a11a29 — Q124
0 11G22 - 12021

Therefore

=Y
w
—
24
S~—
—_—
|
Ut Wi Wl
|
w N o= wi
—

—~

=3

~
r—

|
[N}
|

N————
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-2 1
of7 2

14. If A were nonsingular and AB = A, then it would follow that A~*AB = A~'A4 and hence that
B =1. So if B # I, then A must be singular.

15. Since
ATTA=AA =T
it follows from the definition that A~' is nonsingular and its inverse is A.
16. Since
AT(A—l)T _ (A—lA)T =7
(Afl)TAT _ (AAfl)T =7
it follows that
(Afl)T — (AT)fl
17. If Ax = Ay and x # y, then A must be singular, for if A were nonsingular, then we could multiply
by A=1 and get
A tAx = A Ay
X =y
18. Form =1,
(Al)fl _ Afl _ (Afl)l
Assume the result holds in the case m = k, that is,
(Ak)—l _ (A—l)k
It follows that
(A—l)k-‘rlAk-i-l _ A—I(A—l)kAkA _ A—IA =7
and
Ak+1(A—1)k+1 _ AAk(A—l)kA—l _ AA—I =7
Therefore
(A—l)k—H — (Ak—i-l)—l
and the result follows by mathematical induction.

19. If A2 = O, then
(I+A)I-A)=T+A-A+A*=1
and
(IT-—AI+A)=T-A+A+A>=1T
Therefore I — A is nonsingular and (I — A)~! =T + A.
20. If A**! = O, then

(T+A+- -+ AT - A) = T+A+-+A") — (A+ A% + ... + AP
=T-Att =1

and

(I—AT+A+- -+ A" = T+ A+ + A — (A+ A2 4. 4 AP
=T- At =1

Therefore I — A is nonsingular and (I — A)~' =T+ A+ A%+ ... + A
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21. Since

cosf sin@ cosf) —sinf 1 0

R'R= =
—sinf cosf sin 0 cos 6 0 1

and

cosf) —sinf cosf sinf 1 0

RR" = =
sin 6 cos —sinf cosf 0 1

it follows that R is nonsingular and R~ = RT
22.

cos? 0 + sin? 6 0
G2 = = I
0 cos? 0 + sin? 6
23.
H? = (I —2uu”)? = I —4uu” + 4uu’uu”

= I —4uu” + 4u(u’u)u”

= I —4uu’ +4uu’ =TI (since u'u=1)
24. In each case, if you square the given matrix, you will end up with the same matrix.
25. (a) If A2 = A, then

(I-A2?=T-2A+A?=T1-2A+A=1-A

(b) If A? = A, then
1 1 1 1 1
T—ZAT+A)=T—A+A—-A2=T—-ZA+A—--A=1
( 2 )(I+4) g4t 2 g4t 2

and
1 1 1 1 1
T+ A —-A)=T+A—-A—-A2=T+A—--A-—-A=1
(I+A) 2) + 2 2 + 2 2

Therefore I + A is nonsingular and (I + A)~' =1 — 1A.

26. (a)
d, 0 - 0
D2 0 d3 -+ 0
0 0o - d2,

Since each diagonal entry of D is equal to either 0 or 1, it follows that dfj
j=1,...,n and hence D?> = D.
(b) If A= XDX™!, then

A? = (XDX Y)WXDX ) =XDX 'X)DX '=XDX '=A4

Copyright (©) 2021 Pearson Education, Ltd
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14 Chapter 1 o Matrices and Systems of Equations

27. If A is an involution, then A2 = I and it follows that
1 1 1 1
B? = Z(I+A)2 = Z(I+2A+A?) =@ +24)=(I+4) =B

1 1 1 1
2 (T A2 (T _ 2y _ = _ = (] — =
C 74(1 A) 4([ 2A + A7) 4(2] 24) 2(] A)=C
So B and C' are both idempotent.
BC:%(I—i—A)(I—A):i([—i—A—A—AQ):i(I—FA—A—I):O

28. (ATA)T = AT(AT)T = ATA
(AAT)T:(AT)TATZAAT
29. Let A and B be symmetric n x n matrices. If (AB)T = AB, then

BA=BTAT = (AB)T = AB
Conversely, if BA = AB, then
(AB)T = BTAT = BA= AB
30. (a)
BT = (A+ AT = AT + (AT =AT 1+ A=B
CT = (A—ATYT = AT —(ATYT = AT —A=—C
(b) A= §(A+AT) 4 4(4 - AT)
34. False. For example, if

2 3 1 4 1
A= , B= , X=
2 3 1 4 1
then
5
Ax = Bx =
5
however, A # B.
35. False. For example, if
10 0 0
A= and B =
0 0 0 1

then it is easy to see that both A and B must be singular, however, A + B = I, which is
nonsingular.

36. True. If A and B are nonsingular, then their product AB must also be nonsingular. Using the
result from Exercise 23, we have that (AB)7 is nonsingular and ((AB)T)™! = ((AB)"Y)T. It
follows then that

((AB)T)™' = ((4B) ™' = (B71A™)T = (A7) (B~Y)"
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| 5 | ELEMENTARY MATRICES

0 1
2. (a) [1 O]’ type I

(b) The given matrix is not an elementary matrix. Its inverse is given by

=

Wl

1 0 0
(c) 0 1 0], typelll
-5 0 1
1 0 0
(d o 1/5 0 |, typell
0o 0 1
3. (a) 20
0 2
00 1
M) o 10
100
100
()] o1 2
00 1
100
4. (a) | o 0
00 1
0 —1

(b)
-1 0
01 0
()| 100
00 1
100
5. (a) E=10 1 0
101

Copyright (©) 2021 Pearson Education, Ltd
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16 Chapter 1 o Matrices and Systems of Equations

1 0 -1
b)) F=l01 o0
0 0 1

(c) Since
C=FB=FFA

where F' and E are elementary matrices, it follows that C' is row equivalent to A.

1 0 0 1 0 0 1 0 0
6. (a) E]_: 3 1 0 3E2: 0 1 0 7E3: 0 1 O
0 0 1 2 01 0 -1 1

The product U = FE3FEsFq A is upper triangular.

2 0 4
U=|0 3 3
00 7
100 100 100
b) Byt = -3 1 0 |, Ey' = 01 0]|,B5'=]0 10
00 1 —2 0 1 01 1

The product L = E; 'E; 'ES! is lower triangular.

1 00
L=1 -3 10
-2 1 1

7. A can be reduced to the identity matrix using three row operations

10 1 -1 3 0
E, = , Ly = , Lb3=
-3 1 0 1 0 1
So
EsFEyF1A=1
and hence

—_
s}
—_
—
[\
o

w
—
o
—_
(=)
—

and A~! = E3Es>Eq.
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1 0 2 4
8. (b)
1 1 0 5
1 00 2 1 2
d -2 1 0 0 3 2
3 -2 1 00 2
1 0 1 1 2 -3 1 0 0
9. ) |3 3 4|l -1 1 —1l=lo0o 1 o0
2 2 3 0 -2 3 0 0 1
1 2 -3 1 0 1 1 0 0
~1 1 -1 3 3 4]l=l0o 1 o
0 -2 -3 2 2 3 0 0 1
1 -1 0

10. (e) |0 1 -1

0 0 1
4 7
11. A1[ 5 _5]
_1 3
5 5
Loy
() X=A"'B=| °
R |
5
3 1
b)) Y=BA'=|*° °
4 7
5 5

12. (b) XA+B=C
X =(C—B)A™!

8§ 14
—13 19

d) XA+C=X
XA—-XI=-C
X(A-I)=-C
X=-CA-I)"

2 -4
-3 6
13. (a) If E is an elementary matrix of type I or type II, then E is symmetric. Thus E7 = E is

an elementary matrix of the same type. If F is the elementary matrix of type III formed by
adding « times the ith row of the identity matrix to the jth row, then E7 is the elementary
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18 Chapter 1 o Matrices and Systems of Equations

matrix of type III formed from the identity matrix by adding « times the jth row to the ith
row.

(b) In general, the product of two elementary matrices will not be an elementary matrix. Gener-
ally, the product of two elementary matrices will be a matrix formed from the identity matrix
by the performance of two row operations. For example, if

1 00 100
Eit=12 1 0 and Ex=10 1 0
000 2 0 1

then E; and FE, are elementary matrices, but

is not an elementary matrix.

14. If T = UR, then
lij = Z Uik Tk
k=1

Since U and R are upper triangular
Uil = Uiz =+ =1Uj;—1 =0
Tjt1j = Tjt25 = " —Tnj =0

If 4 > j, then

7 n
lij = E UikTkj + E Uik Tk
k=1

k=j+1
J n
= Z()Tkj-i- Z U0
k=1 k=j+1
=0
Therefore T is upper triangular.
If ¢ = j, then
i—1 n
tij=tiy = Y winthg Fuiri b Y Uitk
k=1 k=j+1
i—1 n
= ZOTkj + uj;ri; + Z u;10
k=1 k=j+1
= UjiTj
Therefore
tij = ujjrj;  j=1,...,m
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15.

16.

17.

18.

19.

20.

21.

Section 5 e Elementary Matrices 19

If we set x = (2,1 —4)7, then
Ax =2a; + lag —4a3 =0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous system has a nonzero
solution, then it must have infinitely many solutions. In particular, if ¢ is any scalar, then cx is
also a solution to the system since

A(cx) =cAx=c0=0

Since Ax = 0 and x # 0, it follows that the matrix A must be singular. (See Theorem 1.5.2)
If a; = 3ay — 2ag3, then
ai —3a2+2a3:0

Therefore x = (1, —3,2)7 is a nontrivial solution to Ax = 0. It follows from Theorem 1.5.2 that
A must be singular.
If xg # 0 and Axg = Bxg, then Cxg = 0 and it follows from Theorem 1.5.2 that C' must be
singular.
If B is singular, then it follows from Theorem 1.5.2 that there exists a nonzero vector x such that
Bx =0.1f C = AB, then

Cx=ABx=A0=0

Thus, by Theorem 1.5.2, C' must also be singular.

(a) If U is upper triangular with nonzero diagonal entries, then using row operation II, U can be
transformed into an upper triangular matrix with 1’s on the diagonal. Row operation III can
then be used to eliminate all of the entries above the diagonal. Thus, U is row equivalent to
I and hence is nonsingular.

(b) The same row operations that were used to reduce U to the identity matrix will transform I
into U~!. Row operation II applied to I will just change the values of the diagonal entries.
When the row operation III steps referred to in part (a) are applied to a diagonal matrix, the
entries above the diagonal are filled in. The resulting matrix, U~!, will be upper triangular.

Since A is nonsingular it is row equivalent to I. Hence, there exist elementary matrices F1, Es, . .., Ey
such that

Ey---E1A=1
It follows that

A '=F,---E;

and

E,---EyB=A"'B=C
The same row operations that reduce A to I, will transform B to C. Therefore, the reduced row
echelon form of (A | B) will be (I | C).

(a) If the diagonal entries of D; are ay, ag, . . ., a, and the diagonal entries of Do are 51, Ba, . .., Bn,
then D1 D5 will be a diagonal matrix with diagonal entries a1 81, ..., a, 3, and Dy Dy will be
a diagonal matrix with diagonal entries Biaq, Boqia, - . ., Bpa,. Since the two have the same
diagonal entries, it follows that D1 Dy = Dy D5 .

(b)

AB = A(aol + a1 A+ -+ apA¥)
apA + a1 A% + - + aqp AT
(aol +arA+ -+ +arAF)A
= BA
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22. If A is symmetric and nonsingular, then
(A7) = (A)7(447Y) = (A7)TAT)Ad = A
23. If A is row equivalent to B, then there exist elementary matrices F1, Fo, ..., Ej such that
A=FyFy 1--- 1B
Each of the E;’s is invertible and E; ' is also an elementary matrix (Theorem 1.4.1). Thus
B=FE'Ey' - E'A

and hence B is row equivalent to A.
24. (a) If A is row equivalent to B, then there exist elementary matrices Ey, Fa, ..., E} such that

A=FEyE,_1---E1B
Since B is row equivalent to C, there exist elementary matrices Hi, Ho, ..., H; such that
B=H;H; - ---H,C

Thus
A= EkEk—l s ElHjHj—l s ch
and hence A is row equivalent to C.

(b) If A and B are nonsingular n X n matrices, then A and B are row equivalent to I. Since A
is row equivalent to I and I is row equivalent to B, it follows from part (a) that A is row
equivalent to B.

25. If U is any row echelon form of A, then A can be reduced to U using row operations, so A is row
equivalent to U. If B is row equivalent to A, then it follows from the result in Exercise 24(a) that

B is row equivalent to U.

26. If B is row equivalent to A, then there exist elementary matrices E1, Fo, ..., E} such that

B=FE,E;_1---EA

Let M = ExEy_1--- E1. The matrix M is nonsingular since each of the F;’s is nonsingular.

Conversely, suppose there exists a nonsingular matrix M such that B = M A. Since M is
nonsingular, it is row equivalent to I. Thus, there exist elementary matrices F1, Fo, ..., Ex such
that

M = FEyE_1---F11
It follows that
B=MA=EyE,_1---E{A

Therefore, B is row equivalent to A.

27. If A is nonsingular, then A is row equivalent to I. If B is row equivalent to A, then using the
result from Exercise 24(a), we can conclude that B is row equivalent to I. Therefore, B must be
nonsingular. So it is not possible for B to be singular and also be row equivalent to a nonsingular
matrix.

28. (a) The system V¢ =y is given by

1 = x? IR A c1 Y1
1 @ x3 e Ty C2 Y2
1 T x2 e ] c

n+1 n+1 n+1 n+1 Yn+1

Comparing the ith row of each side, we have

n
€L+ CTi+ -+ Cnp1 Ty =Y
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30.

31.

32.
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Thus
(b) If z1,29,...,2n4+1 are distinct and Vic = 0, then we can apply part (a) with y = 0. Thus if
p(xr) =c1 +cox + -+ + cpp12™, then
p(z;) =0 1=1,2,...,n+1
The polynomial p(x) has n + 1 roots. Since the degree of p(z) is less than n + 1, p(x) must
be the zero polynomial. Hence
01:02:...:cn+1:0

Since the system V¢ = 0 has only the trivial solution, the matrix V' must be nonsingular.
True. If A is row equivalent to I, then A is nonsingular, so if AB = AC, then we can multiply
both sides of this equation by A~!.

AT'AB = ATMAC
B=CC
True. If £ and F are elementary matrices, then they are both nonsingular and the product of
two nonsingular matrices is a nonsingular matrix. Indeed, G=! = F~1E~1,
True. If a + a; = ag + 2a4, then
ataz—az—2a;,=0
If we let x = (1,1,—1,—2)7, then x is a solution to Ax = 0. Since x # 0 the matrix A must be
singular.
False. Let I be the 2 x 2 identity matrix and let A =1, B = —1, and

C:
01

Since B and C' are nonsingular, they are both row equivalent to A; however,

1 0
B+C=
0 0
is singular, so it cannot be row equivalent to A.
| 6 | PARTITIONED MATRICES
al ala;, ala, - aTa,
al ala; ala, .-+ ala
2. B:ATA: ’ (alva27 yap) = ? 2 2o
al ala; ala, ala,
3.
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5 3
-5 4

-1

[l Nel

|
|

By
By

B
By

B,
By

B,
By

4

1 0|0 1
1 Bz | | Ba Bz | 2 111 3
1322]_[311312]_ 1 213 1
1 2|0 O
0 0 3 1
1 DBio B CB;; CBjs B 0 0]-3 -1
| By ] | By By ] N ] R
1 1 1 2
3 69 3
1 Bio B DBy1 DBy B 3 6(0 0
1 BQQ]_ By Bgz]_ 1 0(0 1
2 1|1 3
1 2]0 O
1 Bis B EB11 EBjo B 1 213 1
1322J_ E321E322]_ 2 11 3
1 0]0 1
1 2 4
1 13 3 12
2 1 1 +[ ] [1 0 2 ] :[ ]
2 4 7 19
4 0 1
10 -3 3|5
-1 3 1 8 -3 6|4
-1 0 2 ] N 8 —4 124
2 -1 3|1
i3 0 0
An = 5 12 = 0 0
4 4
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The block multiplication is performed as follows:

A A Af, AL A ATy + A AT, AnAf + Ap AL,
Aoy Agg A%} A%; A21A?1+A22A,{2 AglAgl +A22Ag12
5
500
5
=] o 2|0
0 012
0O 0 1]0 O 1 0 3 -8
0O 1 0|0 O 2 -9 2 -9
(d) 1 0 0[0 0 3 -8 | = 1 0
0O 0 0]0 1 4 -7 5 —6
0O 0 0|1 O 5 —6 4 -7
- (a)
XYT = xiy] +x2y3 +x3y3

BERE NIRRT

-
R R

(b) Since ij]T = (xjij)T for j = 1, 2, 3, the outer product expansion of Y X7 is just the

transpose of the outer product expansion of XY 7. Thus,

YXT = y1X,{ + YQXg + y3x3T

)]

. It is possible to perform both block multiplications. To see this, suppose A1 is a k X r matrix,
Ajg is a k x (n—r) matrix, Aoy is an (m —k) x r matrix and Aay is (m —k) x (n—r). It is possible
to perform the block multiplication of AAT since the matrix multiplications Ay AT}, A, AL
A AT, A AL Ao AT Aoy AT Aga AT, Agy AL are all possible. It is possible to perform the
block multiplication of AT A since the matrix multiplications AT} A1y, AT} A1o, AL Ay, AL Ay,
AT, Apg, AL, Aoy, AL, Agy are all possible.

CAX = A(xq,%9, .., %) = (AXq, AXa, ..., AX,)
B = (blaan" '7b7‘)
AX = B if and only if the column vectors of AX and B are equal

AXj:bj jzl,...,T
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9. (a) Since D is a diagonal matrix, its jth column will have d;; in the jth row and the other entries
will all be 0. Thus d; = djje; for j =1,...,n.
(b)
AD = A(dyier, dxpes, ... dyney)
= (dllAeh dQQAeZa ceey d’nnAen)

= (di1a1, dxpay,...,dpay)
10. (a)
D
Us = [U1 Ug] — Uy%, + 1R0 = Uy 3
O
(b) If we let X = UX, then
X = UlEl = (01111,02112, . .,O’nun)

and it follows that

A=UxvT =xvT = alulvf + aquVQT RERRE anunvf

11.
A C Ay A I A A+ CAg
@) Ay O Aso 0 1
If
Al A+ CAgyy =0
then
C = —AApAs)
Let
A1_11 _A1_11A12A2_21
B =
@) Ay

Since AB = BA = I, it follows that B = A~1.

12. Let 0 denote the zero vector in R™. If A is singular, then there exists a vector x; # 0 such that
Axqy = 0. If we set

X1
X =
0
then
A 0] X1 AX1 + 00 0
MX = = =
0 OX1 + BO 0
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By Theorem 1.5.2, M must be singular. Similarly, if B is singular, then there exists a vector
X9 # 0 such that Bx,; = 0. So if we set

0
X2

then x is a nonzero vector and Mx is equal to the zero vector.

15.
0] I I B B I
A= , A% = , A=
I -B B I I 2B
and hence
I+B 2[+B
A7l 4 A%+ A% =

2I+B I+B

16. The block form of S~! is given by

It follows that

I —A AB O I A
STIMS =

I -A AB  ABA

@) 0

B BA

17. The block multiplication of the two factors yields

I O
B I

If we equate this matrix with the block form of A and solve for B and C, we get

A A
0] C

- An Al
BAyy  BA;p+C

B = AglAl_ll and C = A22 — A21A1_11A12
To check that this works note that

BAyj = Ay A A = Ay
BApy +C = Ag A Ao + Agg — Ag AN Ay = Agy
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18.

19.

20.

21.

22.

and hence
I O

B I

A11 A12 All A12
(0] C A1 Az
In order for the block multiplication to work, we must have

XB=S and YM=T

Since both B and M are nonsingular, we can satisfy these conditions by choosing X = SB~! and
Y =TM™ '
(a)

bl b10
bg bQC
BC = (¢)= =cb
b, b,c
(b)
Z1
Z2
Ax = (al7a27 s 7an)
T

= aj(v1) +az(z2) + - +an(zn)
(c) Tt follows from parts (a) and (b) that
Ax = aj(x1) +ag(x2) + - + ay(xy,)
= xi1a; +T2az + -+ Tpa,
If Ax = 0 for all x € R", then
aj=Ae; =0 for j=1,...,n

and hence A must be the zero matrix.
If
Bx=Cx forall xeR"
then
(B-C)x=0 forall xeR"

It follows from Exercise 20 that

B-C =0
B =C
(a)
A1 0 A a X A1 0 b
—cTA-1 1 ' B Tpi1 —cTA-1 1 b1
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I A~ la x A b
o7  —cTA'a+p Tpit —cTA " 'b + b, 41

(b) If
y=A"la and z=A"'b
then
<_CTy + B)Tpt1 = —c'z + brt1
—cTz+ bn+1 T
ni1 = —— L (5 0
Tn+1 —CTy+ﬁ (B Cy# )
and

X + .’L'n+1A_1a = A_lb
X = Ailb — SCn+1Aila =Z— Tp4+1yY

MATLAB EXERCISES

1.

In parts (a) and (c), it should turn out that A1 = A4 and A2 = A3. In part (b) and (d), A1 = A3
and A2 = A4. Exact equality might not occur in parts (c) and (d) because of roundoff error.

. The solution x obtained using the \ operation will be more accurate and yield the smaller residual

vector. The computation of x is also more efficient since the solution is computed using Gaussian
elimination with partial pivoting and this involves less arithmetic than computing the inverse
matrix and multiplying it times b.

(a) Since Ax =0 and x # 0, it follows from Theorem 1.5.2 that A is singular.

(b) The columns of B are all multiples of x. Indeed,

B = (x,2x, 3%, 4x, 5%, 6x)
and hence
AB = (Ax,2Ax,3Ax,4Ax,5A4%,6A%x) = O

(¢) If D= B+ C, then
AD=AB+ AC =0+ AC = AC

. By construction, B is upper triangular with diagonal entries are all equal to 1. Thus, B is row

equivalent to I, and, hence, B is nonsingular. If one changes B by setting bg; = —1/128 and
computes Bx, the result is the zero vector. Since x # 0, the matrix B must be singular.

(a) Since A is nonsingular, its reduced row echelon form is I. If Ej,..., E; are elementary
matrices such that Ej---E1A = I, then these same matrices can be used to transform
(A Db) to its reduced row echelon form U. It follows then that

U=E; - E(A b)=AA b)=(1 A 'b)

Thus, the last column of U should be equal to the solution x of the system Ax = b.

(b) After the third column of A is changed, the new matrix A is now singular. Examining the
last row of the reduced row echelon form of the augmented matrix (A b), we see that the
system is inconsistent.

(¢) The system Ax = c is consistent since y is a solution. There is a free variable x3, so the
system will have infinitely many solutions.

(f) The vector v is a solution since

Av=A(w+3z)=Aw+ 34z =c

For this solution, the free variable x3 = vs = 3. To determine the general solution just set
X = w + tz. This will give the solution corresponding to x3 = t for any real number ¢.

(c) There will be no walks of even length from V; to V; whenever i + j is odd.
(d) There will be no walks of length k from V; to V; whenever ¢ + j + k is odd.
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(e) The conjecture is still valid for the graph containing the additional edges.
(f) If the edge {Vs, Vs} is included, then the conjecture is no longer valid. There is now a walk
of length 1 from Vi to Vg and i+ j+k =6+ 8+ 1 is odd.

8. The change in part (b) should not have a significant effect on the survival potential for the turtles.
The change in part (c) will effect the (2,2) and (3,2) of the Leslie matrix. The new values for
these entries will be lo5 = 0.9540 and I35 = 0.0101. With these values, the Leslie population model
should predict that the survival period will double but the turtles will still eventually die out.

9. (b) x1 =c—Vx2.
10. (a)

0] I 0] I I B
A? = =
I B I B B I
If the result holds for kK =m
I mB
A2m —
mB I

then
A2m+2 _ A2A2m

I (m+1)B

(m+1)B I

It follows by mathematical induction that the result holds for all positive integers k.

P 1 kB| _|kB I
I B |kB I I (k+1)B

11. (a) By construction, the entries of A were rounded to the nearest integer. The matrix B = ATA
must also have integer entries and it is symmetric since

BT = (ATA)T = AT(AT)T = ATA=B
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