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1A.2 In an evacuated tube, we expect these particles to be electrons from 

 the metal cathode.  In that case, the ratio of charge to mass is 

 Q
m

1.602 181019C
9.109 39 1031kg

 1.759 1011C kg1.  Since this ratio for an 

 electron is much larger than the one given for the canal rays in this 

 helium-filled tube, we can reason that these particles are about 10,000 

 times as massive as an electron.  It turns out that He  has the right mass: 

 
Q
m


1.602 18 1019C
(4.00)(1.660 54 1027kg)

 2.41107C kg1 

 

1A.4 All of these can be determined using c  .  

(a) False. The speed of EMR is constant. (b) False. Blue light has a 

wavelength of 470 nm, green light a wavelength of 530 nm; the 

wavelength is increasing. (c) False. Since   c  for all EMR,  
IR IR  radio radio.  Therefore, 

6

3

1.0 10 nm ;  this means 1000 ,
1.0 10 nm

radioIR
IR radio

radio IR

  
 


  


 not half. 

(d) False. Same reasoning as for (c). 

 

1A.6 radio waves < infrared radiation < visible light < ultraviolet radiation 

 

1A.8 1 MHz = 1 106 Hz  = 1 106 s1. 

(a)  
c



2.998 108 m s–1

99.3106 s–1  3.0 m   
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(b)  
c



2.998 108 m s–1

1420 106 s–1  0.211 m = 211 mm  

1A.10 All of these can be determined using E h  and c  .  For 

example: in the first entry, energy is given, so:  

v 
E
h


2.71019 J
6.6261034 J s

4.11014 s1  4.11014Hz

and;	  c
v

2.998108ms1

4.11014 s1
7.4107m740nm

 
Frequency Wavelength Energy of photon  Event 

4.1  1014 Hz 740 nm 2.7  10–19 J Traffic light 

3.00  1014 Hz 999 nm 1.99  10–19 J IR heated food 

5  1019 Hz 6 pm 3  10–14 J Cosmic ray  

1.93  108 Hz 155 cm 1.28  10–25 J Listen to radio 

 

1A.12 Given that E 
1
n2

2 
1
n1

2







,  this quantity will be (a) 0.012 for n = 6 to  

n = 5, (b) 0.049 for n = 4 to n = 3, and (c) 0.75 for n = 2 to n = 1. 

Therefore (c) will have the most energy. 

 

1A.14 (a) The Rydberg equation gives v when 15 13.29 10 s   , from which 

one can calculate   from the relationship .c v  

 

  

v   1
n2

2 
1
n1

2








and c  v  2.997 92  108 m s1

c   1
n2

2 
1
n1

2









2.997 92  108 m s1  (3.29  1015 s1) 1
1


1
9








  1.03 107 m  103 nm

 

 (b) Lyman series 

 (c) This absorption lies in the ultraviolet region. 
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1A.16 Because the line is in the visible part of the spectrum, it belongs to the 

 Balmer series for which the ending n is 2. We can use the following 

 equation to solve for the starting value of n: 

 

v  c



2.99792  108 m s1

434  109 m
 6.91 1014 s1

v  (3.29  1015 s1) 1
n2

2 
1
n1

2








6.91 1014 s1  (3.29  1015 s1) 1
22 

1
n1

2








 

 

0.210  0.250  1
n1

2

1
n1

2  0.04
 

  
n1

2 
1

0.04
n1  5

 

 This transition is from the n = 5 to the n = 2 level. 

 

1A.18 Here we are searching for a transition of He+ whose frequency matches 

 that of the n = 2 to n = 1 transition of H. The frequency of the H transition: 

 H  
1
12 

1
22








3
4






  

 A transition of the He+ ion with the same frequency is the n = 2 to n = 4 

 transition: 

 
He+  (Z2 )

1
22 

1
42






 (22 )

3
16







3
4






  

 

1B.2 (a) False. UV photons have higher energy than infrared photons.  (b) 

 False. The kinetic energy of the electron is directly proportional to the 



54    Focus 1  Atoms 

  

 energy (and hence frequency) of the radiation in excess of the amount of 

 energy required to eject the electron from the metal surface.  (c) True. 

1B.4 Electron diffraction (b) best supports the idea that particles have wave 

properties. Diffraction was thought to be purely a wave property; however 

electrons also exhibit diffraction when reflected from a crystal. 

 

1B.6 From c  v and E  hv, E  hc1. 

 

  

E (for one atom)  (6.626 08  1034 J s)(2.997 92  108 m s1)
865  109 m

 2.30  1019 J atom1

E (for 1.00 mol)  (6.022  1023 atoms mol1)(2.30  1019 J atom1)
 1.38  105 J mol1 or 138 kJ mol1

 

 

1B.8 (a) E  hv
 (6.626 08  1034 J  s)(1.2  1017 s1)
 8.0  1017 J

 

 (b) The energy per mole will be 236.022 10  times the energy of one 

 atom. 

 
E  (2.00 mol)(6.022 1023 atoms mol1)

 (6.626 08  1034 J  s)(1.2  1017 s1)
 9.6  107 J or 9.6  104 kJ

 

 (c)  E 
2.00 g  Cu

63.54 g mol1







   (6.022  1023 atoms mol1)(8.0  1017 J atom1)
 1.5  106 J or 1.5  103 kJ

 

 

1B.10 40 W = 40 Jsec-1, so in 2 seconds 80 J will be emitted. 

For blue light (  470 nm  470 10–9  m) the energy per photon is: 
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E   hc1

 6.626 081034 J s  2.997 92108m s1  470109m 1

 4.21019 J photons1

 

number of photons  (80. J) (4.7  1019 J photon1)1

 1.7  1020  photons
moles of photons  (1.7  1020  photons) (6.022  1023 mol photons1)1

 2.8  104  mol photons

 

 

1B.12 From Wien’s law: 3
max 2.88 10 K m.   T  

 
max 

2.88  103 K m
2.3 104 K

max  1.3 107 m = 130 nm. 

 

1B.14 From Wien’s law: 3
max 2.88 10 K m.   T  

 
  

(T )(632 109 m)  2.88 103 K m
T  4.56  103 K

 

 

1B.16 The wavelength of radiation needed will be the sum of the energy of the 

 work function plus the kinetic energy of the ejected electron. 

 

Ework function  (4.37 eV)(1.6022  1019 J eV1)  7.00  1019 J

Ekinetic 
1
2

mv2


1
2

(9.10939  1031 kg)(1.5  106 m  s1)2

 1.02  1018 J
Etotal  Ework function  Ekinetic

 7.00  1019 J  1.02  1018 J
 1.72  1018 J

 

 To obtain the wavelength of radiation we use the relationships between E, 

 frequency, wavelength, and the speed of light: 
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From E  hv and c  v we can write

 
hc
E


(6.626  1034 J  s)(3.00  108 m  s1)

1.72  1018 J
 1.16  107 m or 116 nm

 

 

1B.18 (a) Mass of one hydrogen atom: 

1.008 g mol1 1 mol
6.022  1023 atoms







1 103 kg
1 g






 1.674  1027 kg 

Using the de Broglie relationship, we get 

  h(mv)1

 (6.626 08  1034 kg m2 s1)[(1.675 1027 kg)(10. m s1)]1

 4.0  108 m = 40. nm.  
(b) Since     speed,  decreasing the speed should cause the wavelength 

to decrease. 

 

1B.20 Let x = wavelength; then   x m s1. Now use the de Broglie 

relationship: 

  

  x  h(mev)1

 (6.626 08  1034 kg m2 s1)[(9.1094  1031 kg)(x m s1)]1

x2  7.27  104 m2

x= 2.70  102 m = 2.70 cm.

 

 

1B.22 

  

Use the de Broglie relationship,   hp1  h(mv)1.
(175 km h1)(1000 m /km)(1 h /3600 s)  48.6 m s1

 

 

  

  h(mv)1

 (6.626 08  1034 kg m2 s1)[(1531 kg)(48.6 m s1)]1

 8.90  1039 m
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1B.24 The mass of one He atom is given by the molar mass of He divided by 

 Avogadro’s constant: 

 
mass of He atom 

4.00 g mol1

6.022  1023 atoms mol1

 6.64  1024 g or 6.64  1027 kg

 

 From the de Broglie relationship, 1 or ,  p h h mv  we can calculate 

 wavelength. 

 

  h(mv)1


6.626 08  1034 J  s

(6.64  1027 kg)(1230 m  s1)


6.626 08  1034 kg m2  s1

(6.64  1027 kg)(1230 m  s1)
 8.11 1011 m

 

 

1B.26 The uncertainty principle states that 

px  1

2
 ; so for a hydrogen, 


p  mHv,  then mHvx 

1
2
 and x 

1
2


mHv

; if we assume that 

the uncertainty in the velocity of the hydrogen atom is 

v  5.0 m  s–1, knowing that the mass of a hydrogen atom is  

mH  1.0079 g mol–1 
1 mol

6.022 1023  atoms


1 kg
1000 g

 1.6737 10–27  kg,
 

and remembering that 1 J  1 kg m2  s–2 ,  gives  


  1.054 457 1034 J s  1 kg m2 s2

J








  

    1.054 457 1034 kg m2 s1 

Then 

x  1
2

1.054 457 10—34 kg m2 s–1

(1.67 37 10—27 kg)(5.0 m s–1)






x  6.310–9 m = 6.3 nm.
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1B.28 The uncertainty principle states that 

mx  1

2
 ; so, 


v  1

2


mx
.
 

(a) For an electron confined in a nanoparticle of diameter 2.00 102 nm:  



v  1
2


mex


1
2

1.054 457 1034 kg m2 s1

(9.1094 1031kg)(2.00 107  m)






  289 m s1  

(b) For a Li+ ion confined to the same nanoparticle: 

m
Li

 6.94 g mol–1 
1 mol

6.022 1023  atoms


1 kg
1000 g

 1.15 10–26  kg
  



v  1
2


mex


1
2

1.054 457 1034 kg m2 s1

(1.15 1026 kg)(2.00 107  m)






  0.0229 m s1  

(c) Because the Li+ ion has a smaller deviation in its speed, it can be 

defined more accurately. 

 

1C.2 (a) For movement between the energy levels the energy must be 

determined for each level and then the difference calculated  

  
E  E4  E1 

42 h2

8mL2 
12 h2

8mL2 
15h2

8mL2  

Then 
  
4,1 

hc
E


8mhcL2

15h2 
8mcL2

15h
 

For an electron in a 100.–pm box, the expression becomes 

 

4,1 
8(9.109 39  1031 kg) (2.997 92  108 m s1) (100. 1012 m)2

15(6.626 08  1034 J s)
 2.20  109 m = 2.20 nm.

 

(b) Do the same as in (a): 

  
E  E4  E2 

42 h2

8mL2 
22 h2

8mL2 
12h2

8mL2  

  
4,2 

hc
E


8mhcL2

12h2 
2mcL2

3h  
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For an electron in a 100.–pm box, the expression becomes 

 

4,1 
2(9.109 39 1031 kg) (2.997 92  108 m s1) (100. 1012 m)2

3(6.626 08  1034 J s)
 2.75109 m = 2.75 nm.

  

 

1C.4 Yes, degeneracies are allowed. The lowest energy states which are 

 degenerate in energy are the n1  1,  n2  4  state and the n1  2,  n2  2

 state. 

 

1C.6 When n = 4, three nodes are seen (marked with a ): 

 
 

1C.8 The observed line is the third lowest energy line.  

The frequency of the given line is:

 
c



2.9979 108  m s-1

5910 109 m
 5.0731013  s-1 

 This is closest to the frequency resulting from the n = 9 to n = 6 

 transition: 

 
  
  

1
n2

2 
1
n1

2









  3.29 1015  Hz 1

62 
1
92






 5.08 1013  Hz 

0.00 0.500 1.00

1.42

-1.42

0.00

(x)/m-1/2

x (m)

n = 4
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1D.2 (a) Energy will remain the same; energy is a function of n. (b) n remains 

the same (from n = 2).  (c) l increases (from l = 0 for s to l = 1 for p).   

(d) Radius remains the same (radius is a function of n). 

 

1D.4 The equation demonstrated in Example 1D.1 can be used: 

 

 

  

 2 (r  0.83a0 , ,)
 2(0, ,)



e2(0.83a0 )/a0

a0
3

1
a0

3








 0.19  

 

1D.6 The radial probability distribution may be found by integrating the full 

 wavefunction, (r,,), over all possible values of  and . Since s-

 orbitals are spherically symmetric and are not a function of  or , 

 integration of any s-orbital over all  and  always gives the same result: 

 

  

 (r)2

0

2


0



 sin d d  (r)2 sin d d
0

2


0
















 (r)2 2 d
0

2













 (r)2(4 )

 

 The sin term in the equation above is needed to correct for the 

 differential volume element in spherical polar coordinates. Likewise, to 

 integrate over all possible values of r one must evaluate the integral: 

 (4 )  (r)2 r 2

0



 dr  

 where again the r2 term corrects for the differential volume element in 

 spherical polar coordinates. From this expression it is clear that the 

 probability distribution is (4 )  (r)2 r 2 . 

 



Focus 1  Atoms    61 

  

1D.8 (a) To find the maximum in the radial probability distribution function for 

 the 3d-orbital, one can take the derivative of the distribution with respect 

 to r, set the result equal to zero and solve for r: 

 
  
P  r 2R3d

2  C 2 r 6 e


2r
3ao   where  C 

4
81 30

1
ao








7
2

 

 dP
dr

 C 2 r6 2
3ao







e


2r
3ao  6 r5 e


2r
3ao












 C2 e


2r
3ao r 6 2

3ao







 6 r5












 0 

 The nontrivial solution to this equation is found when: 

 

r 6 2
3ao







 6 r5  0

Dividing both sides by r5:

r 2
3ao







 6  0 and, therefore, r  9ao

 

 The position of the maximum in the distribution for the 3d-orbital occurs 

 when r = 9ao. 

(b)  The plot of the radial distribution function for the first three s-orbitals 

of hydrogen is given in Figure 1D.5.  We can qualitatively estimate the 

radius using this plot by looking at the radius with the greatest probability 

density.  This would give an approximate value of 13ao. A more advanced 

approach would be to solve this problem similarly to part (a) of this 

question.  The radial wavefunction for the 3s-orbital is: 

 

32
3 3/2 5/2 7/2

o o o

2 2
3

2
32 2 3 4 5 6

3 4 5 6 7
o o o o o

3 2 2    
9

2where 
9 3

The derivative of the radial probability distribution, , 
with respect to  is:

9 12 48 8 4
9 9 81

o

o

r
a

s

s

r
a

R C r r e
a a a

C

P r R
r

dP C e r r r r r
dr a a a a a





 
    






    

  

                                 


 


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 The nontrivial solutions to this equation are found when the polynomial 

 in brackets is equal to zero. The roots are most easily found using a 

 computer and plotting the solution. 

 

1D.10 The dxy orbital will have its lobes pointing between the x and y axes, while 

 the d
x2y2  orbital will have its lobes pointing along the x and y axes. 

 

 

 

 

 

 

1D.12 (a) 6: l = 0, 1, 2, 3, 4, 5; (b) 6s, 6p, 6d, 6f, 6g, 6h; (c) 1 + 3 + 5 + 7 + 

9 + 11 = 36 orbitals 

 

1D.14 (a) 6 values: 0, 1, 2, 3, 4, 5; (b) 7 values: 3, 2, 1, 0, 1, 2, 3;    (c) 1 

 value: 0; (d) 3 subshells: 3s, 3p, and 3d 

 

1D.16 (a) n = 3; l = 0; (b) n = 4; l = 1; (c) n = 5; l = 2; (d) n = 6; l = 3 

 

1D.18 (a) 0; (b)  1, 0, 1   (c) 2, 1, 0, 1, 2;   (d)  3, 2, 1, 0, 1, 2, 3;    

 

1D.20 (a) 1; (b) 3; (c) 5; (d) 7 

 

1D.22 (a) 4p, 3; (b) 5s, 1; (c) 6d, 5; (d) 7f, 7 

 

1D.24 (a) 3; (b) 1; (c) 1; (d) 49 

 

1D.26 (a) cannot exist; (b)  exists; (c) exists; (d) exists 

 

x x

d
x2y2dxy
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1E.2 (a) Energy increases (p orbital is higher in energy than an s in Li); (b) n 

remains the same; (c) l increases; (d) radius increases. Both (a) and (d) are 

different from Exercise 1D.2 because of shielding effects of the added 

electrons, causing Zeff  for Li to be smaller than Z; as a result the p-

electrons are not held as tightly as the s-electrons, which leads to a larger 

radius and higher energy for the p-electron. 

 

1E.4 (a) The total Coulomb potential energy V(r) is the sum of the individual 

 coulombic attractions and repulsions. There will be one attraction between 

 the nucleus and each electron plus a repulsive term to represent the 

 interaction between each pair of electrons. For beryllium, there are four 

 protons in the nucleus and four electrons. Each attractive force will be 

 equal to 

 
(e)( 4e)

40r

4e2

40r
 

e2

0r
 

 where  e  is the charge on the electron and +4e is the charge on the 

 nucleus, 0 is the vacuum permittivity, and r is the distance from the 

 electron to the nucleus.   There will be six repulsive terms between the 

 four electrons of the form: 

 (e)(  e)
40rab


e2

40rab

 

The total potential will be: 

 


e2

0r1


e2

0r2


e2

0r3


e2

0r4


e2

0r12


e2

0r13


e2

0r14


e2

0r23


e2

0r24


e2

0r34

 
e2

0

1
r1


1
r2


1
r3


1
r4


1

4r12


1

4r13


1

4r14


1

4r23


1

4r24


1

4r34








 

The first four terms are the attractive terms between the nucleus and each 

electron, and the last six terms are the repulsive interactions between all   

possible combinations of electrons taken in pairs. 
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 (b) The number of attractive terms is straightforward. There should be 

 one term representing the attraction between the nucleus and each 

 electron, so there should be a total of n terms representing attractions. The 

 number of repulsive terms goes up with the number of electrons. 

 Examining the progression, we see that 

 n    1 2 3 4   5   6   7 

 # of repulsive terms  0 1 3 6 10 15 21 

 Hence, the addition of an electron adds one rab  term for each electron 

 already present; so the difference in the number of repulsive terms 

 increases by 1n  for each additional electron. This relation can be 

 written as a summation to give the total number of repulsive terms: 

 number of repulsive terms = (n  1)
1n
  

 The total number of attractive and repulsive terms will thus be equal to  

 
  
n  (n  1)

1n


 
The point of this exercise is to show that each added electron, increases 

the number of e-e repulsive terms. 

 

1E.6 (a) False. The 2s-electrons will be shielded by the electrons in the 1s-

orbital and will thus have a lower Zeff. (b) False. Because the 2p- orbitals 

do not penetrate to the nucleus as the 2s-orbitals do, they will have a lower 

Zeff. (c) False. The ability of the electrons in the 2s-orbital to penetrate 

to the nucleus will make that orbital lower in energy than the 2p. (d) 

False. There are three p-orbitals, and the electron configuration for C will 

be 1s2 2s2 2p2. There will be two electrons in the p-orbitals, but each will 

go into a separate orbital, and as per quantum mechanics and Hund’s rule, 

they will be in these orbitals with the spins parallel (i.e., the spin magnetic 

quantum numbers will have the same sign) to that of the ground-state 

atom. (e) False. Because the electrons are in the same orbital, they must 

have opposite spin quantum numbers, ms ,because the Pauli exclusion 
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principle states that no two electrons in an atom can  have the same four 

quantum numbers. 

 

1E.8 The atom with a 4s2 4p2  valence-shell configuration is germanium, Ge. 

 The ground-state configuration is given by (d); the other configurations 

 represent excited states. 

 

1E.10 (a) This configuration is not possible because the maximum value l can 

have is 1n ; because n = 2, max 1.l  (b) This configuration is not 

possible because the maximum value l can have is 1n ; because n = 6, 

lmax  5. (c) This configuration is not possible; for l = 4, ml can only be 

an integer from 4 to 4; that is, can only equal 0, 1, 2, 3, or 4.lm       

 

1E.12  (a) Titanium:  [Ar] 3d2 4s2  

(b) Chromium:  [Ar] 3d54s1  

(c) Europium:  [Xe] 4f 76s2  

(d) Krypton:  [Ar] 3d10 4s2 4p6  

 

1E.14 (a) Germanium:  [Ar] 3d10 4s2 4p2  

(b) Cesium:  [Xe] 6s1  

(c) Iridium: [Xe] 4f145d76s2 

(d) Tellurium:  [Kr] 4d105s25p4  

(e) Thallium:  [Xe] 4f145d106s26p1  

(f)  Plutonium:  [Rn] 5f 67s2  

 

1E.16 (a) Ga; (b) Na; (c) Sr; (d) Eu 

 

1E.18 (a) 4s; (b) 3p; (c) 3p; (d) 4s 
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1E.20 (a) 19; (b) 7; (c) 16; (d) 27 

 

1E.22 (a) 2; (b) 3; (c) 1; (d) 0 

 

1E.24  

 

Element 

 

Electron configuration 

Unpaired 

electrons 

N [He] 2s2 2p3  3 

P [Ne] 3s23p3  3 

As [Ar] 3d10 4s2 4p3 3 

Sb [Kr] 4d105s25p3 3 

Bi [Xe] 4f 145d106s26p3 3 

 

1E.26 (a) ns2np5 ; (b) ns2np4;  (c) (n1)d3ns2;  (d) ns2np2 

 

1F.2 (a) I > Br > Cl; (b) Ga >As > Se;  (c)  K > Ca > Zn;   

(d)  Ba > Sr > Ca. 

 

1F.4 (a)  In3+;  (b)  P3-;  (c)  Pb2+;  (d) 2Ba ;  (e) 3As  ; (f) 2Sn   

 

1F.6 (a) Ca  (b) Mg; (c) Al  

 

1F.8 (a) As one goes across a period, a proton and an electron are added to 

each new atom. The electrons, however, are not completely shielded from 

the nucleus by other electrons in the same subshell, so the set of electrons 

takes on an overall greater nuclear charge. (b) The ionization energies 

of the Group 16 elements of O, S, and Se lie somewhat lower than those of 

the Group 15 elements that precede them. This exception may be 

explained by observing that, as the three p-orbitals up through Group 15 
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are filled, each electron goes into a separate orbital. The next electron (for 

Group 16) goes into an orbital already containing an electron, so electron-

electron repulsions are higher. This increased repulsion makes it easier to 

remove the additional electron from the Group 16 elements. 

 

1F.10 The first ionization energy for chlorine is much greater than that of sulfur 

due to the Zeff  of Cl being greater than that of S; as a result, the valence 

electrons are held tighter, and shielding effects here due to e-e repulsions 

have a minimal effect on electron energies. Based solely on Zeff  we would 

expect chlorine to have a much higher second ionization energy than 

sulfur; however, S and Cl have nearly the same value. This can be 

explained by the orbital box diagrams for the two ions: 

S :                   Cl :       

Here, spin pairing causes the electron in Cl  already to be at a higher 

energy than expected and results in the energy required to remove it to be 

lower than expected, bringing it down to nearly the same as that required 

to remove the second electron from S .  
 

1F.12 (a) selenium; (b) carbon; (c) arsenic 

 

1F.14 (a) Sb3+, Sb5+;  (c) Tl+, Tl3+;  (b) and (d) only form one positive ion each. 

 

1F.16 From Appendix 2D, the radii (in picometers) are 

 Ge 123  Sb 182 

 Ge2  90  Sb3  89 

 The diagonal relationship between elements can often be attributed to the 

 fact that the most common oxidation states for these elements give rise to 

 ions of similar size, which consequently often show similar reaction 

 chemistry. 
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1F.18 (b) As and Sn do not exhibit a diagonal relationship. Note: (a) Be and Al 

as well as Ga and Sn exhibit diagonal relationships. Because diagonal 

relationships often are a result of similarities in ionic radii, they can persist 

across the s and p blocks. 

 

1F.20 (c) hafnium, (d) niobium, and (e) cadmium are transition metals. 

 

1F.22 (a) metal; (b) nonmetal; (c) metalloid; (d) metalloid;  

 (e) nonmetal; (f) metalloid 

 

1.2 (a) We would expect to see the excited electron in the hydrogen atom fall 

from the n1  5 level to each of levels below it: n2  4,  3,  2,  and 1;  

therefore, we would expect to see four lines in its atomic spectrum. 

(b) The range of wavelengths should span from n1  5,  n2  4  to 

n1  5,  n2  1. Thus: 

5,4  
1
n2

2 
1
n1

2







 3.29 1015  Hz 1

42 
1
52






 7.40 1013  Hz

5,4 
c
5,4


2.9979 108  m s-1

7.40 1013  m1  4.05106  m = 4050 nm.   

Likewise, for the n1  5,  n2  1 transition,  we get 

5,1  3.16 1015  Hz and 5,1  9.49 108  m = 94.9 nm.  

The wavelengths are expected to range from 94.9 nm to 4050 nm. 

 

1.4 If each droplet observed had contained an even number of electrons, the 

technicians would have reported the charge of an electron to be twice as 

large as it really is. 

 

1.6 Showing that this is true involves integrating the probability function over 

all space. The probability function is given by the square of the wave 

function, so that for the particle in the box we have: 
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 

2
L







1
2

sin
n x

L






 

The probability function will be given by: 

 2 
2
L







sin2 n x
L







 

Because x  can range from 0 to L  (the length of the box), we can write the 

integration as 

 2 dx
0

x

 
2
L







sin2 n x
L







dx
0

x

  

For the entire box, we write probability of finding the particle somewhere 

in the box: 

2
L







sin2 n x
L







dx
0

L

  

2 2

2

0

2
2

0 0

0

2 sin

2 sin

2 1 cos sin
2 2

2 1 cos sin 0
2 2

If  is an integer, sin  will always be zero and

L L

x

L

n xprobability dx
L L

n x dx
L L

n x n x x
L n L L

Ln n
L n
n n

pr





 


 




       
   

    
 

       
   
           



 

2 1
2
Lobability

L
    

 

 

1.8 (a) The smallest increment of charge between droplets will be the charge 

on one electron, 4.8 x 10–10 esu;   

(b)
9

10

6.72  10 esu 14 electrons
4.8  10 esu/electron









  

(c) Both are a measure of the charge of an electron and their 

relationship can be found by: 
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10 19

10

(4.8  10 esu)(relationship) 1.602  10 C
relationship = 3.3x10 C/esu

 



  
 

1.10 In general, as the principal quantum number increases, the energy 

spacing between orbitals becomes smaller. This trend indicates that 

it does not take very much change in electronic structure to cause the 

normal orbital energy pattern to rearrange. 

 

1.12 The peaks observed in the PES spectra correspond to orbital 

energies; for each energy value seen, a corresponding orbital is 

present.  Thus, if three values are seen in the PES spectrum, that 

atom has three orbitals (a 1s, 2s, and a 2p); each PES value observed 

corresponds to the ejection of all electrons from that orbital. The 

PES value observed is approximately equal to the ionization energy 

of the first electron to be removed from that orbital; differences 

reflect the differences in how the various measurements are made. 

See Figure 1F.10 and Appendix 2 for the successive ionization 

energies of the elements.  

(a) Because three PES energies are observed, the elements must have 1s-, 

2s-, and 2p- electrons.  The observed values: 
 

correspond most closely to the fourth (25,000 1molkJ  ), second 

(2427 kJ mol–1), and first (799 kJ mol–1)  ionization energies of B 

(1s2 2s2 2 p1). See Figure 1F.10. 

(b) The PES values observed: 
‐1 ‐1 ‐1301	eV	(29.0	MJ×mol ),	47.8	eV	(4.61	MJ×mol ),	and	11.4	eV	(1.10	MJ×mol )

correspond most closely to the first (1090 1molkJ  ) and third (4620 
1molkJ  ) ionization energies of C (1s2 2s2 2p2 ).  The remaining value 

(29 MJ mol–1) should correspond to the energy necessary to remove 

an electron from a 1s- orbital in an atom with Z = 6.  The fifth 

‐1 ‐1 ‐1257eV	(24.8	MJ×mol ),	25.2	eV	(2.43	MJ×mol ),	and	8.29	eV	(0.800	MJ×mol )
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ionization energy for this value is not given in the Appendix, it is 

consistent with the value of the fourth ionization energy for boron 

(25,000 1molkJ  ).  This corresponds to the removal of an electron 

from a 1s- orbital in an atom with Z = 5, presumably an energy-

similar process when compared to carbon.  

 

1.14 This trend is attributed to the inert-pair effect, which states that the  
s-electrons are less available for bonding in the heavier elements. Thus, 

there is an increasing trend as we descend the periodic table for the 

preferred oxidation number to be 2 units lower than the maximum one. As 

one descends the periodic table, ionization energies tend to decrease. For 

Tl, however, the values are slightly higher than those of its lighter analog. 

 

1.16 (a) The relation is derived as follows: the energy of the photon entering, 

total ,E  must be equal to the energy to eject the electron, Eejection,  plus the 

energy that ends up as kinetic energy, kinetic,E  in the movement of the 

electron, so Etotal  Eejection  Ekinetic . 

But Etotal  h  for the photon and Ekinetic 
1
2







mv2 where m is the mass 

of the object and v is its velocity. Eejection  corresponds to the ionization 

energy, I,  so we arrive at the final relationship desired. 

(b) Etotal  h  hc1

 (6.62608  1034 J  s) (2.99792  108 m  s1) (58.4  109 m)1

 3.401  1018 J
 Eejection  Ekinetic  
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Ekinetic 
1
2

mv2






1
2







(9.10939  1028 g) (2450 km s1)2


1
2







(9.10939  1031 kg) (2.450  106 m s1)2

 2.734  1018 kg m2 s2  2.734  1018 J

3.401  1018 J  Eejection  2.734  1018 J

Eejection  6.67  1019 J

 

 

1.18 Given that En    h
n2    2.18 1018 J

n2  andE  Efinal  Einitial : 

(a) For an electron to fall from the 4d to 1s level,  the energy of the photon 

is E  E1  E4  2.18  1018 J 1
12 

1
42






 2.04  1018 J .  (The 

negative sign means that energy is released or emitted).  (b) Similarly, an 

electron moving from the 4d to 2p level will emit a photon of 4.09  10-19 

J;  (c) Same as (b); an electron moving from the 4d to 2s emits the same 

amount of energy as it would if it were moving to the 2p-orbital.  This is 

due to the fact that all orbitals having the same principal quantum number 

n are degenerate (i.e., they have the same energy).  (d) In a hydrogen 

atom, no photon would be emitted on moving between orbitals possessing 

the same n (due to degeneracy of the 4d and the 4s orbitals in hydrogen). 

(e) Since potassium has more electrons and protons than hydrogen, the 

individual orbitals within a given shell will have different energies (arising 

from the attractions and repulsions of electrons with the nucleus and other 

electrons in the atom).  As a result we expect to see emission lines for all 

the transitions; thus potassium should show four lines while hydrogen only 

shows two. 

 

1.20   = 1064 nm = 1.064  10-6 m;  The energy of a photon of this wavelength is 

E    hc


   (6.626 08  1034 J s)(2.998 108 m)
1.064 106 m

   1.867 1019 J ; the 
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energy of the ejected electron is 0.137 eV  (1.602  10-19 JeV-1) or  

2.195  10–20 J.  The difference between these two values is 1.65  10–19 J, 

or 1.65  10–22 kJ per atom of thulium.  Converting this number to electron 

volts will give the electron affinity of thulium: 

 (1.651019 	J/atom)(1	eV/1.6021019 	J)	=	1.03	eV/atom   
 We can also give the electron affinity in kJ/mol by multiplying 1.65  10-22 

kJ/atom by Avogadro’s number to give 99.4 kJ/mol.  

 
1.22   A = Mg; B = O; C = Mg+2; D = O-2. The assignments can be made by 

looking at neutral atom and ionic radii (Figures 1F.4 and 1F.6). 

 

1.24 The radial distribution of a 3s orbital is given by curve (b), while curve (a) 

shows the same for a 3p orbital; this can be determined by examining the 

electron density near the origin (which is the nucleus); the plot with the 

most electron density closest to (0, 0) arises from the s orbital. 

 

1.26 If there were an additional p-orbital for a given shell then the amount of 

electrons to fill that shell would increase from 8 in our world to 10 in this 

four-dimensional world.  (a)  The periodic table would increase in length 

by the addition of 2 groups (columns).  This would shift what were s-block 

metals in period 3 to the last two groups in period 2.  All of  which would 

shift all the elements in period 3 over by 2, and the first four elements in 

period 4 would shift to period 3.  (b)  The first two noble gases in this 

four-dimensional world would have atomic numbers of 2 (helium) and 12 

(magnesium). 

 

1.28 (a)  
c



2.99792  108 m s1

7.83  1014 s1  3.83  10-7 m  383 nm   

(b)  
c



2.99792  108 m s1

452  109 m
 6.63  1014 s1 
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1.30 Use E  hc1 to determine the change in energy for each wavelength; 

this will be the change in energy per barium atom. So for 487 nm: 

E487 
(6.626 08  1034 J s)(2.997 92  108 m s1)

487  109 m
 4.08  1019 J Ba atom1

  

(a) To calculate the energy in electronvolts per Ba atom we must take the 

change in energy and divide it by 1.602  10-19 J/eV: 
19 1 19

487
1

(4.08 10 J Ba atom )(1 eV/1.602 10 J) 

2.55 eV Ba atom

E   



    

 
 

Similarly, we obtain the following values for the other wavelengths: 
1

524
1

543
1

553
1

578

2.37 eV Ba atom

2.28 eV Ba atom

2.24 eV Ba atom

2.15 eV Ba atom .

E
E

E

E









  

  

  

  

  

(b)  To calculate the energy per mole we must multiply the change in by 

Avogadro’s number: 

E487  (6.022  1023 Ba atoms mol1)(4.08 1019 J Ba atom1)

 2.46  105 J mol1 or 246 kJ mol1
  

Similarly, we obtain the following values for the other wavelengths: 

E524  228 kJ mol1

E543  220 kJ mol1

E553  216 kJ mol1

E578  207 kJ mol1.

  

 

1.32 (a)  Using the Rydberg equation where n1 = 2 and n2 = 100: 
 

   

  
1
n1

2 
1
n2

2





 3.29  1015 s1  1

22 
1

1002





 8.22  1014 s1

 
c



2.99792  108 m s1

8.22  1014 s1  3.65  10-7 m  365 nm
 

 



Focus 1  Atoms    75 

  

(b)  This transition is found in the Balmer series.  (c)  The transition from 

a state with n = 100 to one with n = 90 would release less energy than the 

transition from n = 100 to n = 2.  Less energy would mean a longer 

wavelength, so we would expect a much larger wavelength for this 

transition than for the transition in part (a). 

 
1.34  (a) The electron configuration of atomic chlorine is [Ne] 3s2 3p5; it 

has one unpaired electron. The electron configuration of a chloride ion is 

that of [Ne] 3s2 3p6; this configuration is identical to neutral argon.  (b) 

Assuming a one quantum level jump of an excited chlorine atom should 

have an electron configuration of [Ne] 3s2 3p4 4s1.  (c) The energy of a 

given level n in an atom other than hydrogen can be estimated by  

En  
Zeff

2 h
n2  

Zeff
2 (2.18  1018 J)

n2 .  For chlorine, Zeff is approximately 

equal to 6 (Fig. 1F.3).  For an electron to jump from the n = 3 to n = 4 

quantum level the energy needed is: 

E  E4  E5 ,  so E  (6)2 (2.18  1018 J) 1
42 

1
32






 3.82  1018 J.  

This energy corresponds to a wavelength of 52.0 nm (the X-ray region). 

(d) This amount of energy corresponds to 2.30 × 103 kJmol-1 or 23.8 eV 

per chlorine atom.  (e) If the proportion of 37 Cl in a sample of chlorine 

atoms is reduced to 37.89% (half of its typical value), the proportion of 
35 Cl will be increased to 62.11%.  Based on this, the average mass of a 

chlorine atom will be: 

Clave mass    37.89%
100







6.139 1023g   62.11%
100







5.807 1023g

Clave mass    5.9331023g/atom   35.73 g/mol
 

 (f) through (h): 
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Compound Chlorine 

oxidation number 

Name 

ClO2 +4 Chlorine dioxide 

NaClO +1 Sodium hypochlorite 

KClO3 +5 Potassium chlorate 

NaClO4 +7 Sodium perchlorate 

 
 

 
 


