
 

INSTRUCTOR’S  
SOLUTIONS MANUAL 

INTRODUCTION TO 
MATHEMATICAL STATISTICS 

SEVENTH EDITION 

Robert Hogg 
University of Iowa 

Joseph McKean 
Western Michigan University 

Allen Craig 

 

Boston   Columbus   Indianapolis   New York   San Francisco   Upper Saddle River 

Amsterdam   Cape Town   Dubai   London   Madrid   Milan   Munich   Paris   Montreal   Toronto 
Delhi   Mexico City   Sao Paulo   Sydney   Hong Kong   Seoul   Singapore   Taipei   Tokyo



 
 

 

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the 
development, research, and testing of the theories and programs to determine their effectiveness. The author and 
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation 
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential 
damages in connection with, or arising out of, the furnishing, performance, or use of these programs. 
 
Reproduced by Pearson from electronic files supplied by the author. 
 
Copyright © 2013, 2005, 1995  Pearson Education, Inc. 
Publishing as Pearson, 75 Arlington Street, Boston, MA  02116. 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any 
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written 
permission of the publisher. Printed in the United States of America. 
 
ISBN-13: 978-0-321-79565-6 
ISBN-10: 0-321-79565-2 
 
 
 
 
www.pearsonhighered.com 

 



Contents

1 Probability and Distributions 1

2 Multivariate Distributions 11

3 Some Special Distributions 19

4 Some Elementary Statistical Inferences 31

5 Consistency and Limiting Distributions 49

6 Maximum Likelihood Methods 53

7 Sufficiency 65

8 Optimal Tests of Hypotheses 77

9 Inferences about Normal Models 83

10 Nonparametric and Robust Statistics 93

11 Bayesian Statistics 103

iii

Copyright ©2013 Pearson Education. Inc.



Copyright ©2013 Pearson Education. Inc.



Chapter 1

Probability and Distributions

1.2.1 Part (c): C1 ∩ C2 = {(x, y) : 1 < x < 2, 1 < y < 2}.

1.2.3 C1 ∩C2 = {mary,mray}.

1.2.6 Ck = {x : 1/k ≤ x ≤ 1 − (1/k)}.

1.2.7 Ck = {(x, y) : 0 ≤ x ≤ 1/k, 0 ≤ y ≤ 1/k}.

1.2.8 limk→∞ Ck = {x : 0 < x < 3}. Note: neither the number 0 nor the number 3
is in any of the sets Ck, k = 1, 2, 3, . . .

1.2.9 Part (b): limk→∞ Ck = φ, because no point is in all the sets Ck, k = 1, 2, 3, . . .

1.2.11 Because f(x) = 0 when 1 ≤ x < 10,

Q(C3) =

∫ 10

0

f(x) dx =

∫ 1

0

6x(1 − x) dx = 1.

1.2.13 Part (c): Draw the region C carefully, noting that x < 2/3 because 3x/2 < 1.
Thus

Q(C) =

∫ 2/3

0

[∫ 3x/2

x/2

dy

]
dx =

∫ 2/3

0

xdx = 2/9.

1.2.16 Note that

25 = Q(C) = Q(C1) +Q(C2) −Q(C1 ∩C2) = 19 + 16 −Q(C1 ∩ C2).

Hence, Q(C1 ∩ C2) = 10.

1.2.17 By studying a Venn diagram with 3 intersecting sets, it should be true that

11 ≥ 8 + 6 + 5 − 3 − 2 − 1 = 13.

It is not, and the accuracy of the report should be questioned.
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2 Probability and Distributions

1.3.3

P (C) =
1

2
+

1

4
+

1

8
+ · · · =

1/2

1 − (1/2)
= 1.

1.3.6

P (C) =

∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
ex dx+

∫ ∞

0

e−x dx = 2 6= 1.

We must multiply by 1/2.

1.3.8
P (Cc

1 ∪ Cc
2) = P [(C1 ∩ C2)

c] = P (C) = 1,

because C1 ∩ C2 = φ and φc = C.

1.3.11 The probability that he does not win a prize is
(

990

5

)
/

(
1000

5

)
.

1.3.13 Part (a): We must have 3 even or one even, 2 odd to have an even sum.
Hence, the answer is (

10
3

)(
10
0

)
(
20
3

) +

(
10
1

)(
10
2

)
(
20
3

) .

1.3.14 There are 5 mutual exclusive ways this can happen: two “ones”, two “twos”,
two “threes”, two “reds”, two “blues.” The sum of the corresponding proba-
bilities is (

2
2

)(
6
0

)
+
(
2
2

)(
6
0

)
+
(
2
2

)(
6
0

)
+
(
5
2

)(
3
0

)
+
(
3
2

)(
5
0

)
(
8
2

) .

1.3.15

(a) 1 −
(
48
5

)(
2
0

)
(
50
5

)

(b) 1 −
(
48
n

)(
2
0

)
(
50
n

) ≥ 1

2
, Solve for n.

1.3.20 Choose an integer n0 > max{a−1, (1−a)−1}. Then {a} = ∩∞
n=n0

(
a− 1

n , a+ 1
n

)
.

Hence by (1.3.10),

P ({a}) = lim
n→∞

P

[(
a− 1

n
, a+

1

n

)]
=

2

n
= 0.

1.4.2
P [(C1 ∩C2 ∩ C3) ∩C4] = P [C4|C1 ∩ C2 ∩ C3]P (C1 ∩C2 ∩ C3),

and so forth. That is, write the last factor as

P [(C1 ∩ C2) ∩ C3] = P [C3|C1 ∩C2]P (C1 ∩ C2).

Copyright ©2013 Pearson Education. Inc.



3

1.4.5 [(
4
3

)(
48
10

)
+
(
4
4

)(
48
9

)]
/
(
52
13

)
[(

4
2

)(
48
11

)
+
(
4
3

)(
48
10

)
+
(
4
4

)(
48
9

)]
/
(
52
13

) .

1.4.10

P (C1|C) =
(2/3)(3/10)

(2/3)(3/10) + (1/3)(8/10)
=

3

7
<

2

3
= P (C1).

1.4.12 Part (c):

P (C1 ∪ Cc
2) = 1 − P [(C1 ∪ Cc

2)
c] = 1 − P (C∗

1 ∩ C2)

= 1 − (0.4)(0.3) = 0.88.

1.4.14 Part (d):
1 − (0.3)2(0.1)(0.6).

1.4.16 1 − P (TT ) = 1 − (1/2)(1/2) = 3/4, assuming independence and that H and
T are equilikely.

1.4.19 Let C be the complement of the event; i.e., C equals at most 3 draws to get
the first spade.

(a) P (C) = 1
4 + 3

4
1
4 +

(
3
4

)2 1
4 .

(b) P (C) = 1
4 + 13

51
39
52 + 13

50
38
51

39
52 .

1.4.22 The probability that A wins is
∑∞

n=0

(
5
6

4
6

)n 1
6 = 3

8 .

1.4.27 Let Y denote the bulb is yellow and let T1 and T2 denote bags of the first and
second types, respectively.

(a)

P (Y ) = P (Y |T1)P (T1) + P (Y |T2)P (T2) =
20

25
.6 +

10

25
.4.

(b)

P (T1|Y ) =
P (Y |T1)P (T1)

P (Y )
.

1.4.30 Suppose without loss of generality that the prize is behind curtain 1. Con-
dition on the event that the contestant switches. If the contestant chooses
curtain 2 then she wins, (In this case Monte cannot choose curtain 1, so he
must choose curtain 3 and, hence, the contestant switches to curtain 1). Like-
wise, in the case the contestant chooses curtain 3. If the contestant chooses
curtain 1, she loses. Therefore the conditional probability that she wins is 2

3 .

1.4.31 (1) The probability is 1 −
(

5
6

)4
.

(2) The probability is 1 −
[(

5
6

)2
+ 10

36

]24
.

Copyright ©2013 Pearson Education. Inc.



4 Probability and Distributions

1.5.2 Part (a):

c[(2/3) + (2/3)2 + (2/3)3 + · · · ] =
c(2/3)

1 − (2/3)
= 2c = 1,

so c = 1/2.

1.5.5 Part (a):

p(x) =

{
(13

x )( 39
5−x)

(52
5 )

x = 0, 1, . . . , 5

0 elsewhere.

1.5.9 Part (b):
50∑

x=1

x/5050 =
50(51)

2(5050)
=

51

202
.

1.5.10 For Part (c): Let Cn = {X ≤ n}. Then Cn ⊂ Cn+1 and ∪nCn = R. Hence,
limn→∞ F (n) = 1. Let ǫ > 0 be given. Choose n0 such that n ≥ n0 implies
1 − F (n) < ǫ. Then if x ≥ n0, 1 − F (x) ≤ 1 − F (n0) < ǫ.

1.6.2 Part (a):

p(x) =

(
9

x−1

)
(

10
x−1

) 1

11 − x
=

1

10
, x = 1, 2, . . . 10.

1.6.3

(a) p(x) =

(
5

6

)x−1(
1

6

)
, x = 1, 2, 3, . . .

(b)

∞∑

x=1

(
5

6

)x−1(
1

6

)
=

1/6

1 − (25/36)
=

6

11
.

1.6.8 Dy = {1, 23, 33, . . .}. The pmf of Y is

p(y) =

(
1

2

)y1/3

, y ∈ Dy.

1.7.1 If
√
x < 10 then

F (x) = P [X(c) = c2 ≤ x] = P (c ≤
√
x) =

∫ √
x

0

1

10
dz =

√
x

10
.

Thus

f(x) = F ′(x) =

{ 1
20

√
x

0 < x < 100

0 elsewhere.

1.7.2
C2 ⊂ Cc

1 ⇒ P (C2) ≤ P (Cc
1) = 1 − (3/8) = 5/8.

Copyright ©2013 Pearson Education. Inc.
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1.7.4 Among other characteristics,

∫ ∞

−∞

1

π(1 + x2)
dx =

1

π
arctanx

∣∣∣∣
∞

−∞
=

1

π

[π
2
−
(
−π

2

)]
= 1.

1.7.6 Part (b):

P (X2 < 9) = P (−3 < X < 3) =

∫ 3

−2

x+ 2

19
dx

=
1

18

[
x2

2
+ 2x

]3

−2

=
1

18

[
21

2
− (−2)

]
=

25

36
.

1.7.8 Part (c):

f ′(x) =
1

2
2xe−x = 0;

hence, x = 2 is the mode because it maximizes f(x).

1.7.9 Part (b): ∫ m

0

3x2 dx =
1

2
;

hence, m3 = 2−1 and m = (1/2)1/3.

1.7.10 ∫ ξ0.2

0

4x3 dx = 0.2 :

hence, ξ40.2 = 0.2 and ξ0.2 = 0.21/4.

1.7.13 x = 1 is the mode because for 0 < x <∞ because

f(x) = F ′(x) = e−x − e−x + xe−x = xe−x

f ′(x) = −xe−x + e−x = 0,

and f ′(1) = 0.

1.7.16 Since ∆ > 0

X > z ⇒ Y = X + ∆ > z.

Hence, P (X > z) ≤ P (Y > z).

1.7.19 Since f(x) is symmetric about 0, ξ.25 < 0. So we need to solve,

∫ ξ.25

−2

(
−x

4

)
dx = .25.

The solution is ξ.25 = −
√

2.

Copyright ©2013 Pearson Education. Inc.



6 Probability and Distributions

1.7.20 For 0 < y < 27,

x = y1/3,
dx

dy
=

1

3
y−2/3

g(y) = =
1

3y2/3

y2/3

9
=

1

27
.

1.7.22

f(x) =
1

π
,

−π
2

< x <
π

2
.

x = arctany,
dx

dy
=

1

1 + y2
, −∞ < y <∞.

g(y) =
1

π

1

1 + y2
, −∞ < y <∞.

1.7.23

G(y) = P (−2 log X4 ≤ y) = P (X ≥ e−y/8) =

∫ 1

e−y/8

4x3 dx = 1 − e−y/2, 0 < y <∞

g(y) = G′(y) =

{
e−y/2 0 < y <∞
0 elsewhere.

1.7.24

G(y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y)

=





∫√
y

−√
y

1
3 dx =

2
√

y

3 0 ≤ y < 1
∫√

y

−1
1
3 dx =

√
y

3 + 1
3 1 ≤ y < 4

g(y) =





1
3
√

y 0 ≤ y < 1

1
6
√

y 1 ≤ y < 4

0 elsewhere.

1.8.4

E(1/X) =

100∑

x=51

1

x

1

50
.

The latter sum is bounded by the two integrals

∫ 101

51
1
x dx and

∫ 100

50
1
x dx.

An appropriate approximation might be

1

50

∫ 101.5

50.5

1

x
dx =

1

50
(log 100.5− log 50.5).

Copyright ©2013 Pearson Education. Inc.
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1.8.6

E[X(1 −X)] =

∫ 1

0

x(1 − x)3x2 dx.

1.8.8 When 1 < y <∞

G(y) = P (1/X ≤ y) = P (X ≥ 1/y) =

∫ 1

1/y

2xdx = 1 − 1

y2

g(y) =
2

y3

E(Y ) =

∫ ∞

1

y
2

y3
dy = 2, which equals

∫ 1

0 (1/x)2xdx.

1.8.10 The expectation of X does not exist because

E(|X |) =
2

π

∫ ∞

0

x

1 + x2
dx =

1

π

∫ ∞

1

1

u
du = ∞,

where the change of variable u = 1 + x2 was used.

1.9.2

M(t) =

∞∑

x=1

(
et

2

)x

=
et/2

1 − (et/2)
, et/2 < 1.

Find E(X) = M ′(0) and Var(X) = M ′′(0) − [M ′(0)]2.

1.9.4
0 ≤ var(X) = E(X2) − [E(X)]2.

1.9.6

E

[(
X − µ

σ

)2
]

=
1

σ2
σ2 = 1.

1.9.8

K(b) = E[(X − b)2] = E(X2) − 2bE(X) + b2

K ′(b) = −2E(X) + 2b = 0 ⇒ b = E(X).

1.9.11 For a continuous type random variable,

K(t) =

∫ ∞

−∞
txf(x) dx.

K ′(t) =

∫ ∞

−∞
xtx−1f(x) dx ⇒ K ′(1) = E(X).

K ′′(t) =

∫ ∞

−∞
x(x − 1)tx−2f(x) dx ⇒ K ′′(1) = E[X(X1)];

and so forth.

Copyright ©2013 Pearson Education. Inc.



8 Probability and Distributions

1.9.12

3 = E(X − 7) ⇒ E(X) = 10 = µ.

11 = E[(X − 7)2] = E(X2) − 14E(X) + 49 = E(X2) − 91

⇒ E(X2) = 102 and var(X) = 102 − 100 = 2.

15 = E[(X − 7)3]. Expand (X − 7)3 and continue.

1.9.16

E(X) = 0 ⇒ var(X) = E(X2) = 2p.

E(X4) = 2p⇒ kurtosis = 2p/4p2 = 1/2p.

1.9.17

ψ′(t) = M ′(t)/M(t) ⇒ ψ′(0) = M ′(0)/M(0) = E(X).

ψ′′(t) =
M(t)M ′′(t) −M ′(t)M ′(t)

[M(t)2]

⇒ ψ′′(0) =
M(0)M ′′(0) −M ′(0)M ′(0)

[M(0)2]
= M ′′(0) − [M ′(0)]2 = var(X).

1.9.19

M(t) = (1 − t)−3 = 1 + 3t+ 3 · 4 t
2

2!
+ 3 · 4 · 5 t

3

3!
+ · · ·

Considering the coefficient of tr/r!, we have

E(Xr) = 3 · 4 · 5 · · · (r + 2), r = 1, 2, 3 . . . .

1.9.20 Integrating the parts with u = 1 − F (x), dv = dx, we get

{[1 − F (x)]x}b
0 −

∫ b

0

x[−f(x)] dx =

∫ b

0

xf(x) dx = E(X).

1.9.23

E(X) =

∫ 1

0

x
1

4
dx+ 0 · 1

4
+ 1 · 1

2
=

5

8
.

E(X2) =

∫ 1

0

x2 1

4
dx+ 0 · 1

4
+ 1 · 1

2
=

7

12
.

var(X) =
7

12
−
(

5

8

)2

=
37

192
.

1.9.24

E(X) =

∫ ∞

−∞
x[c1f1(x) + · · · + ckfk(x)] dx =

k∑

i=1

ciµi = µ.

Copyright ©2013 Pearson Education. Inc.
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Because
∫∞
−∞(x− µ)2fi(x) dx = σ2

i + (µi − µ)2, we have

E[(X − µ)2] =

k∑

i=1

ci[σ
2
i + (µi − µ)2].

1.10.2

µ =

∫ ∞

0

xf(x) dx ≥
∫ ∞

2µ

2µf(x) dx = 2µP (X > 2µ).

Thus 1
2 ≥ P (X > 2µ).

1.10.4 If, in Theorem 1.10.2, we take u(X) = exp{tX} and c = exp{ta}, we have

P (exp{tX} ≥ exp{ta}] ≤M(t) exp{−ta}.

If t > 0, the events exp{tX} ≥ exp{ta} and X ≥ a are equivalent. If t < 0,
the events exp{tX} ≥ exp{ta} and X ≤ a are equivalent.

1.10.5 We have P (X ≥ 1) ≤ [1− exp{−2t}]/2t for all 0 < t <∞, and P (X ≤ −1) ≤
[exp{2t} − 1]/2t for all −∞ < t < 0. Each of these bounds has the limit 0 as
t→ ∞ and t→ −∞, respectively.
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