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the text, calculator discussion for the Texas Instruments BAII Plus or BAII Plus Professional calculators is typeset in
a different font from the rest of the text (the sans serif font).

Acknowledgements

In the preface to the text, the authors thanked their student accuracy checkers Carl Gillette, Karen Kimberly, and
Gagan Nanda. Their duties included sharing their solutions to the problems with the authors, so it is appropriate to
thank them again here.

The author also wishes to express her appreciation to the graduate students who have served as teaching assistants
for her interest theory courses: thanks to Rebecca Armon, Darice Chang, Miriam Fisk, Emma Fong, Anne Miller, Ana
Neira, Kristen Tanaka, and Michal Kujovic.

Thanks also to the many students who came to office hours. You asked me to explain how to solve many of these
problems and made me aware of common pitfalls and areas of confusion. This manual is surely a better book because
of you!

Finally, to my family, I again offer my gratitude. You, along with my pastels, add color and fun.

Contacting the author

If you note errors of any sort, kindly send an e-mail message reporting them; the author’s e-mail address is
lvaaler@math.utexas.edu. The author would also appreciate receiving any other comments you wish to
make.

Leslie Jane Federer Vaaler






CHAPTER O

An introduction to the Texas Instruments
BA Il Plus

(0.3) BA Il Plus calculator Basics
(1) To set to 9-formatting, key 2INN FORMAT 9 ENTER KD QLII'I'l. Compute (3.264)(1.0825) +

(3]

(4.67)(1.065) by pressing

EREEXIEE |-usz.<'.j.'4-(.?x|-n|(.5|'.J.
At this point, the calculator will display “8.50683". Rounding 8.50683 to the nearest hundredth, you obtain
8.51, since 8.50683 is a number between 8.505 and 8.515. If you have 2—formatting and press the above

string of keystrokes to compute (3.264)(1.0825) + (4.67)(1.065), the display will show “8.51". On the other
hand, if you have 2-formatting and push

LiJJLﬂLﬂJLiLH”””““LJ

you will be adding the two rounded products, 3.53 plus 4.97; the result is 8.50.

fa] Yo —ay ’*'1mp||19 SO — Rir | L'J’-]' by kairq

Hia wielz J302.755 150, Tf von poofar o to vze sacn:l2s2s, you can also obtain this answer by first keying
1 4| S o S D J to compute 500(1.04)° and storing the resulting 608.3264512 in your

favorite register m (where m an integer of your choosing between 0 and 9); to do this, key ‘ STO ‘m . Next, calculate

S00L; AN v pressics| 1 ol Bl 1 G and finally keyJ RLT. |JJ to obtain the

Ac=teed =y Asing yor vheuld nbrur 1 S35 31490 . T <k nearest ten-thousandth, as specified in the problem, the
answeris 1,508.7335.

(b) The ratio % may be calculated by computingiliiii N LlLLLi: l‘li‘J The
result is 212.9611558. To the nearest ten-thousandth, the answer is 212.9612.

As in part (a), you may store an intermediate result, which you recall later, if you prefer not to use parentheses.

(©)

” — H 1 H = ‘ gives 105 _ 1 ~ 1.857651118 so, to the nearest ten-thousandth, the

answeris 1.8577







CHAPTER 1

The growth of money

(1.3) Accumulation and amount functions

(1) In order to determine K, use the property Ax(0) = K. We have Ax(0) = 1163(1% = 10, so K = 10. Therefore,
A )
a(20) = AKRY — 100080 _ 4 55,

(3) Firstly, observe that a(0) = 0 forces B = 1. Secondly, .02 = i} = % = a(l) —1s01.02 =
a(1?) + .01(1) + 1 = a + .01, and @ = .01. Therefore, a(t) = .01t + .01 + 1, and iy = a®-a® —

a(3)
12112 oy 071428571 ~ 7.14285%.

(5) The amount of interest earned from time O to # is the sum of the amount of interest earned in the firtst n time
periods, namely

1
1+2+4+--+n= 2n(n+1)§

this equality may be obtained by noting that

1
P42+ tn= [+ 2+ +m)+ (1 +2++ 0 —1)+n)

:%[(1+2+---+n)+(n+(n—1)+...+2+1)]

:%[(1+n)+(2+(n—1))+---+((n—1)+2)+(n+1)]

=é[(n+1)+(n+1)+---+(n+1)+(n+1)]=én(n+1).

(7) Notethat Axg(n—1) = 3(n — 1)2+2(n—1)+800 = [3n2—6n+3]+[2n—2]+800 = 3n%+(—6+2)n+800 =
3n% — 4n + 801. Therefore,

_ Ag(n)—Ag(n—1) _ [3n* 4 2n + 800] — [3n* — 4n + 801]
" Ax(n—1) N 3n2 —4n + 801
6n—1
3n2 —4n 4+ 801°

If you know calculus, you may thus establish that {i, } is decreasing for n > 17 by showing that the real-values

function f(x) = 3x2$€;41—801 has derivative f’(x) < 0 for x > 17. But,

) = 6(3x2 — 4x + 801) — (6x —21)(6x —4) _ (18x% — 24x + 4,806) - (36xz —30x + 4)
(3x2 — 4x + 801) (3x2 — 4x + 801)
_ —18x% + 6x 4 4,802
T (3x2 —4x +801)°
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Therefore, f’(x) is negative whenever —18x? + 6x + 4,802 < 0. The quadratic formula may be used to find
. . . —6—4/62—4(— ,
the roots of —18x2 + 6x + 4,802 = 0. One root is negative and the other is 6 62_;((181)8)(4 802) . 16.5. For
x larger than this positive root, so for x > 17, f'(x) is negative.
If you do not know calculus, you may solve the problem by showing that for n > 17, the ratio

ine1 6(n+1)—1 / 6n—1
in  3(m+1)2—4@n+1)+801/ 3n2—4n+ 801

_(6n +5)(3n* —4n + 801)
~ (6n — 1)(3n2 4 2n + 800)

1813 + 9n* + 4.786n + 4,005
1813 — 9n2 + 4,798n — 800

is less than 1. This is equivalent to establishing that for n > 17, the inequality
18n* — 9n? + 4,786n + 4,005 < 18n° + 9n* + 4,798n — 800
is true. But this inequality is equivalent to 18n% — 12n — 4,805 being positive. Since the largest root of the

2
quadratic equation 182% — 121 — 4,805 = 0is "2+ O e P49 & 16.67516788, 18n% — 121 — 4,805

is indeed positive forn > 17. So, i"i::l < 1forn > 17.

(1.4) Simple interest

(1) We have Agy g00() = $1,000(1 + .05¢), so As1,000(4) = $1,200 and Ag; 000(3) = $1,150. The amount of
interest earned in the fourth year is Ag 000(4) — Ag1,000(3) = $1,200 — $1,150 = $50.

Alternatively, and more simply, with simple interest and a single investment of capital, the amount of interest
is the same each year; it is the product of the amount invested and the annual rate of simple interest: In this
case, the amount of interest earned each year is $1,000 x .05 = $50. The balance at the end of the fourth year
is Ag1,000(4) = $1,000 + 4($50) = $1,200; the original $1,000 had $50 interest added for each of four years.

(3) The number of months elapsed is twelve times the number of years elapsed, since we view a month as l—lz-th
of a year. With simple interest , the amount of interest is given by the product Kr¢ of the amount invested, the
rate of simple interest and the time. Therefore, in order to to compensate for the time being multiplied by a

factor of ﬁ, we must multiply the rate of simple interest by 12. Therefore, the annual rate of simple interest is
12 x.5% = 6%.

(5) We are given that $1,320 = 1,200(1 + rT') where r is the rate of simple interest for this problem. So, rT =

g}:;gg — 1 = .1. We are asked to calculate $500[1 + r(2T)]. Since r = .1, itis equal to $500(1.2) = $600.

(7) Albert Einstein was born on March 14, 1879, and died on April 18, 1955. We divide the interval between March
14, 1879 and April 18, 1955 into three subintervals, namely interval 1 from March 14, 1879 to December 31,
1949, interval 2 from December 31, 1949 to January 1, 1950, and interval 3 from January 1, 1950 to April 18,
1955. Note that the length of interval 2 was just one day.

Let interval 4 designate the interval from from March 14, 1979 to December 31, 2049; this interval is the
interval precisely one hundred years after interval 1, and interval 1 has one fewer day than interval 4 since 1900
was not a leap year (since 1900 is divisible by 100 but not by 400) while 2000 was a leap year. We introduced
interval 4 because its length may be calculated using the Date worksheet.

The number of days that Einstein lived was

(# days in interval 4 - 1) + (#days in interval 2 ) + (# days in interval 3)
= (# days in interval 3) + (# days in interval 4),
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a sum of interval lengths that may each be calculated using the Date worksheet.
To calculate the number of days in interval 3, first key

2w e 1]+ o] o][o [t 4 ][+ [1a][o/s [nrem]

this will result in “DT1 = 1 — 01 — 2000" and “DT2 = 4 — 18 — 2005". Next key mm If “ACT" is then
displayed, find the number of days in interval 3 by keying t CPM' , while if the display shows “360", press
IND SN ‘ 4 ‘ CPT . This should result in the display “DBD = 1,933", and there are 1,933 days in
interval 3.

Similarly, using “DT1 =3 — 14 — 79", “DT2 = 12 — 31 — 49", and “ACT", we find that interval 4 comprises
25,860 days. So, Einstein lived for 1,933 + 25,860 = 27,793 days.

(1.5) Compound interest
(1) We are given Ax(t) = 2, 200(1.04)", and we wish to solve Ag(T) = 8,000. So, we need to find T such

that (1.04)T = gﬁ%. To accomplish this, we take natural logarithms of each side of the equation, finding
n (8:000
In (1.04)" = 1n (5505 ). So. 710 (1.04) = In (5505 ), and T = n(320) 32 91587720 ~ 32.91588.

(3) We are given that (1 + i)9 = 2. Therefore, i = 25 — 1~ .080059739 ~ 8.00597%.

we denote the annual interest rate 1, then we are given that 2 = +1), = +1)7, an =
6) If d h li by i, th gi hat 2 1+i)% 10 1+i)”, and 5
\3a B
12(1 + )", It follows that (1 + )" = 5 = 10 = 23 = AT = + 1)~ The function
f(x) = (1+1i)" is an increasing function, so it follows that n = 3a + B — y. We therefore have n =
aa +bf + cy witha =3,b =1,and c = —1.

(7) We need to find i such that (1 + i)™ = (1.05)%(1.006)'2*¢; the reason we have the exponent 12 x 6 is that
we were given a monthly interest rate during the last six years, and six years consists of 12 x 6 months. So,

1
i = [(1.05)%(1.006)?]™* — 1 ~ 060398768 ~ 6.03988%.

(9) The balance at the end of the first four years was $K[1 + (.025)4] = $1.1K, and if t > 4, the balance ¢ years
after the initial deposit of $K is $1.1K(1.05)"™*. We wish to find 7 so that this is equal to $3K . Equivalently,
we seek £ with 1.1(1.05)™* = 3. Therefore,  — 4 = ' ¢/10) ~ 20.56361412and 1 ~ 24.56361412. Starting
in 1963, the balance triples in about 24.56361 years. .

(11) (a) Applying the equation a(s + t) = a(s)a(t) with¢t = h, we have a(s + h) = a(s)a(h). Therefore,

a(s + h)—al(s) _

d'(s) = limy . nmh_)()w
= limy_,¢ a(s) [Cl(fl;—l}
al =1

= a(s)limp—¢ A

(b) Using the result from part (a) and the definition of the derivative a’(0), we have

a'(s) = als) (1imh_>0 a(hzl_ 1) — a(s) (1imh_>0 a(0 +hh) - 1) — a(s)d' (0).

(c) Observe that js Ina(s) = “a/((ss)) and, [from part (b)] “a/((;)) = a’(0). Therefore,

ti _ ta/(s) _ t , o t o
/0 s Ina(s)ds —/0 a(s) ds—/o a(O)ds—a(O)/0 ds =a'(0).
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(d) It follows from the Fundamental Theorem of Calculus and the result of part (c) that
Ina(t) —Ina(0) = a’(0)t. Butlna(0) =Inl = 0,solna(t) =lna(t) —Ina(0) = a’(0)t.

(e) Recall that a(1) = 1 + i. Therefore, applying the result of part (d) with t = 1, we have In(1 +i) =
Ina(l) = d’(0) x I = d’(0).

(f) Combining the results of parts (d) and (e) and using an important property of logarithms , we find Ina(t) =
a(0) =[In(1 + )]t =tIn(1 +i)=1In(1 +i)".

(1.6) Effective discount rates/ Interest in advance
(1) Antonio gets the use of an extra $3,000 — .08($3,000) = $3,000 — $240 = $2,760.

(3) We are given that $1,320 = $1,450 — $1,450D = $1,450(1 — D). Therefore, D = 1 — 1320 ~ 089655172 ~

1,450
8.96552%. Moreover, I = (1 — D)™ — 1 = {330 ~ .098484848 ~ 9.84848Y%.

(5) Notethat 1.2 = 1 +ip s = (1 +i)* . So, 1 +i = (1.2)25 = (1.2)*. Therefore,
dpzy=1-0+ips) ' =1-0+i)2=1-(12)"%~ .135718926 ~ 13.57189%.

(1.7) Discount functions/ The time value of money
(1) The money is invested at ¢ = 3, but the accumulation function gives the growth of 1 invested at # = 0. Therefore,
we first need to find the amount of money you would need to invest at t = 0 in order to have $3,200at ¢t = 8; you
would need $2’é(;0 = $31’.2f0. But $31’.2f0 deposited at £ = 0 would grow to ($3in0> a3 = ($3in0> (1.15) ~
$2,628.57.

(3) Each year, the value of the home grows by a factor of 1.065. It cost $156,000 on July 31, 2002, so its price P
on July 31, 1998 satisfied P(1.065)4 = $156,000. Thus, P = $156,000(1.065)_4 ~ $121,262.40.

(5) We need to bring the $5,000 back for ten years, using the appropriate discount factor for each year. Therefore,
the present value is $5,000(1.04)2(1.05)"2(1.055) > a $3,084.814759 ~ $3,084.81.

(7) The present value of the first option is 6,000 + $5,940(1 + i )~!, and the second option has present value
$12,000(1 + i)_%. Therefore,

$6,000 4 $5,940(1 + i)~' = $12,000(1 + i)_%.
But this is equivalent to the equation
6,000(1 + i) — $12,000(1 + i)% + $5,940 = 0.
Set X = $12,000(1 + i)2. Then,
6,000X> — $12,000X + $5,940 = 0

and the quadratic formula gives

12,000 & 1/(12,000)% — 4(5,940)(6,000)  12.000 + 1.2
X = \/ _ 12.000£1.200 -,
2(6,000) 12,000

So, 1 +i = X? must either be equal to 1.1> = 1.21 or to .9.> = .81 Assuming the loan is made at a positive
rate of interest, it follows that i = .21 = 21%.

(1.8) Simple discount

(1) Note that $3,460 to be paid at ¢ = 9 has a time ¢ = 0 value of $3,460v(9) = $3,460[1 — 9(.05)] = $1,903.

Bringing this forward to time ¢ = 4, we find a value of $1,903a(4) = $1,903 1_41(‘05) = $2,378.75.
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The specified investment amount $1,000 is not needed to do the problem. All we need to do is to look at the
two accumulation functions, the simple discount accumulation function a4 (t) = 1_.108 , and the simple interest
accumulation function a*'(f) = 1 + .12¢ and determine 7 > 0 so that a**(T) = a*"(T). That is, we need to

solve 1_})8T = 1+ .12T. This equation is equivalent to the equation —.009672 + .04T + 1 = 1 which has

positive solution T = % = Z(TS ~ 4.16667. From the investor’s perspective, the simple discount investment

account looks more and more attractive as time passes while the simple interest account becomes less and less
desirable. Thus, the simple discount is preferable if money is kept on deposit for longer than 7" ~ 4.16667.

(a) At the end of three years, the invested $300 has grown in the simple interest fund to the accumulated
amount $300[1 + (.06)(3)] = $354. After an additional T years, during which time the money grows
in the 8% simple discount account, the balance is is $354(1 — 08T)™!; this is because we are assuming
that the simple discount account has just been opened. Thus, we are trying to determine 7" + 3 where
$354(1 —087)™" = $650. This equation has solution T = é (1 - %) ~ 5.692307692 and hence our

answer is 7' 4 3 ~ 8.692307692 ~ 8.69231 years.

1
(b) We seek i so that $300(1 + )T = $650 where T is as in part (a). Note thati = (%) ™ 1w~
.0930271503 &~ 9.30272%.

(1.9) Compound discount

(1)
3

&)

(N

The balance at the end of five years is $1,000(1 — 064)7° ~ $1,391.9407773 ~ $1,391.94.

To bring back money one quarter, you multiply by(1 .068)_711 . Therefore, the effective quarterly discount rate is
1
1 —(1.068)"% ~ .016312423 ~ 1.63124%.

We are given that in three years, $2,120 — $250 = $1,870 grows to $2,120. Therefore, (1 +i)> = %’égg. So,
the interest for two years on $380 is

2,120

N2 _
$380(1 + i) $380 = $380 |:(1,87O

2
3
) - 1] ~ $33.15508238 ~ $33.16.

We are given
$320 = $X[(1 +i)* — 1] = $X (2 +2i) = $Xi(i +2)

and

$148:$Xd:$X( ! )
141

Rewrite this second equation as $Xi = $148(1 + i), and then substitute this new expression for $Xi into the
first equation, thereby obtaining $320 = $148(1 + i)(i + 2). It follows that 320 = 148i2 + 444i + 296, and
hence 148i2 + 444i — 24 = (. The quadratic formula then tells us that

—444 + \/ (—444)% — 4(148)(—24)
2 x 148 ‘

i =

So that i is positive, we must take

—444 + \/ (—444)% — 4(148)(—24)
i = ~ 053113699 ~ 5.31137%.
2 x 148

Consequently,

X = ~ $2,934.475103 ~ $2,934.48.

i(i +2)
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(1.10) Nominal rates of interest and discount

(1) The equivalent rates may be found as follows;

4
1—d = (1-9) sod = 1- (1= %)" ~ 07763184 ~ 7.76318%.

3 4 4
(1-47) = (1-495") s0d® =3 [1 —(- -048)3} ~ 079732138 ~ 7.97321%
—4 _
1= 4) soi = (1- %)™ — 1~ 084165785 ~ 8.41658%.

. 6 —4 _4
(1+9) =(1-4") si®=56 [(1 0876 1] ~ 08135748 ~ 8.13575%.

(3) Note that i1 = 12 x .5% = 6%. Moreover, i = 1 +.005)'> —1 ~ .061677812 ~ 6.16778%. Also,
d=1—0+i)""=1-1+.005""12 ~ .05809466 ~ 5.80947%.

_ . . . . 2 . .
p- p- = Multiplying this equation by by m~ and substituting

> m m m m -

(5) Since 1 = (1 +

in the given values for i and d (’”), we find

im) ( _ d(m)) im) _d(m) j(m) g(m)

m(.0469936613 — .046773854) = (.0469936613)(.046773854).

So,

_(:046993661309)(.046773854)
T 0469936613 — .046773854

If we insist that m is an integer, then m = 10.

~ 10.0000211 =~ 10.00002.

(7) (a) Every m years, money grows by a factor (1 + i)™ so 1 + miGn) = (I +i)™ and

1

1
i m[(1+z) 1].

(b) We are given a nominal interest rate of 6% for each year-and-a-half period. So, (1 + i)(%) =1+ % =

1.09. Therefore, i = (1.09)§ — 1~ .059134217 =~ 5.91342%.

-1
(c) The discount factor for an m-year period may be expressed as (1 + mi(%)> oras 1 — md 0. These

1 -1
aw = 1= (1emi) 7.
m

The discount factor for m years is also given by the expression (1 — d)™, and therefore 1 — md () =
(1 —d)™. Tt follows that

must be equal, so

1 1
( ) m
d'm ———[1—(1—d) ]

(1.11) A friendly competition (Constant force of interest)

—4

(1) We have § = In(1 +i) = In [(1 - dff’) } - —41n(1 - dff’) = —4In(1- %) ~ 032128687 ~
3.21287%.

(3) We compare the accounts by determining the annual effective interest rates i 4, i g, and i¢ of the three accounts;
as the investor, you should choose the account with the highest rate. We calculate ip = (1.0044)12 -1 =~

054096687 ~ 5.40967%, and ic = e'%316 — 1 x~ .052954476 ~ 5.29545%. Since we are giveniyg = 5.2%, it
would provide the lowest accumulation while you should choose B.
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(1.12) Force of interest

(1) (a) We begin by finding the accumulation function: a(t) = eJoBrdr — [5 05+.006r dr _ ,.051+.003> g4 the
accumulated value of $300 deposited at time 0 is $300a(3) = e'1°7927 = $300e'!77 ~ $358.0893279 ~
$358.009.

(b) If the $300 deposit is made at time 4, then the deposit three years later is $300a8 — §300e/4 -05+-006rdr _
$300¢ 0057 +003r31; — §300¢-249 ~ §384.8226099 ~ $384.82.

t 2 1 1
(3) Note thata(t) = elodrdr — efo 3 dr e3n1+rd)lh — pin[(A+41%)3] — (1 4 £3)3. Therefore, a(4) = (65)%
and, the present vale of $300 to be paid at time 4 is $300/(65)% ~ $74.6133952 ~ $74.61.

(5) Wefind 8, = a(t) = 4 (t 1n(1 + 02))+1n(1 +.030) 5 —In(1—.050) & =In(1.02) + ;% — =%
Therefore §3 = In (1.02) + W + 52 ~ .106149092 ~ 10.61491%.

(7) The 10% simple interest account has force of interest function §; = ﬁl.lz’ which is a decreasing function of 7T,
and the 7% compound interest account has constant force of interest § = In (1.07). If our goal is to maximize
the accumulation at the end of five years or to maximize it at the end of ten years, we wish to always have our
money in the account that has a higher force of interest. So, we should move our money when 7, + 7 = In(1.07);

thatis, at time ¢ = 10 (1 {5y — 1) ~ 4.780076495 ~ 4.78008.

(9) We first need to determine the amount functions 4 (¢) and A®)(¢). Note that we have accumulation function
a(r) = o8V dr — ofo 1 %Gsr dr = (1080 — | 4 0gy,
so AM (1) = 600(1 + .08¢). Also,

‘o (B) [ 5
a(B)(t) — 6‘/0 8 0dr _ 6‘/0 0lrdr _ ,.005¢ ’

and thus A®) (1) = 300e-95” Therefore,

A© 1) = AD (1) +24P) (1) = 600(1 + .081) + 600e 5" = 600 + 481 + 600e%%"”,

and
d
5z(c) = fth(C)(t)/A(C)(t) = (48 + 6te'005t2)/(600(1 + .08¢) + 600e'005t2).

Evaluating at 1 = 4, we obtain 8 = (48 + 24¢:98) /(792 + 600e%8) ~ .051317832 ~ 5.13178%.

(1.13) Note for those who skipped Section (1.11) and (1.12)

(1) Money grows each year by a factor of e"%37°; so the annual effective rate of interest is "%37°—1 ~ .038211997 ~
3.82120%.

(1.14) Inflation

1.042 . I
(1) (2) Buying power grows by a factor of 55 ~ 1.011650485. Therefore, the real rate of interest is ~

1.16505%.

(b) In this case, buying power grows by a factor of } gié ~ 99617590 = 1 + (—.003824092). So, the real
rate of interest is approximately —.38241%.

(3) Buying power grows by a factor of 1.0124 each year while, thanks to interest, money available for purchasing

grows by ( - %)_4 Thus the real rate of inflation r satisfies the equation 1.0124 = ( - %)_4/(1 + 7).

Equivalently, r = (1 - ) (1 0124)7" — 1 & 017948488 ~ 1.79485%.

.024 36
(5) During the three-year period, purchasing power changes by a factor ol 5)2—1.558) 1039

.004002429. So, purchasing power falls by about .40024%.

~ .995997571 =1 —
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Chapter 1 review problems

(1) The accumulated value is $6,208(1 — 223) ™2 (1 4 :93)'2(1 — 042)72¢046x2 ~ $8 353299474 ~ $8,353.30.

(3) The original annual effective interest rate iy correspond to force of interest §o where 1 + ig = edo. Moreover,

(%
$1,039.98 = $K(1 +ig) > = $Ke 2% On the other hand, we are told that $1,060.78 = $Ke 2( 2 ) So,
i) = . _ $K(+ig)”! _ 1,060.78 _ oy
$K(1 +ip)” = $1,060.78. Therefore, 1 + iy = $K(1+;2)_2 = {03095 and K = (1,060.78)(1 + ip) =
2
% ~ 1,081.996008 ~ 1,082. The interest rate ip is equivalent to an annual effective discount rate
d _]_ 1 _|_ 103998 _ 2038
0= T+ip 1,060.78 — 1,060.78 "
If we have a new annual effective discount rate d with d = d20 =, 0126‘.‘78 , then the present value of $K is
2
K(1—d)” = $1,082(1— 38t ) " ~ $1.060.89.

(5) The December 1, 2003 value of the first option is $6,000 + $‘1‘jgg° while the value of the second option on that

date is $12,000(1.05)_%. Setting these two values equal and then dividing by $12,000, we find (1.05)_% =
S5+ 3(1?05) ~ .817460317. Taking natural logarithms, we obtain —f; In(1.05) ~ In(.817460317). So,
N ~ —121n(.817460317)/ In (1.05) ~ 49.5721846 ~ 49.57218.

(7) (a) The accumulation function satisfies @(0) = 1, so ¢ = 1. To determine the values of the constants a and b,
we consider the conditions i3 = 50/1,088 and d4 = 54/1,192 simultaneously. Note that

50 _ i _a@®)—a2  Ya+3b+1)—(@4a+2b+1)  Sa+b
1,088 > a@ 4a +2b+1 T da+2b+1

So,
200a + 1006 4+ 50 = 50(4a + 2b + 1) = 1,088(5a + b) = 5, 440a + 1,088b.

: _ 50-988b
Equivalently,a = 5240 - On the other hand,

54 _, _a@-a@) _(6a+db+1)-(at3b=1)_  Ta+b
T A7 16a 4 4b + 1 = leardb+1

Therefore,

864a + 216b + 54 = 54(16a + 4b + 1) = 1,192(7a + b) = 8,344a + 1,192b.

It follows that 54 = 7480a + 976b = 7480 (%7552 ) 4 976b. Thus,

282,960 = 54(5240) = 7480(50 — 988bh) + 976b(5,240) = 374,000 — 7,390,240b + 5,114,240b,

and
_374000-282960 91,040 04
T 7,390,240 — 5,114,240 2,276,000
Moreover, a = 50-988b _ 50-988(.04) _ ()

5240 5,240

(b) The value at z = 3 of $1,000 to be paid at ¢ = 8 is given by the expression (%’83(;0) a(3). Since
a(3) =9a+ 3t +1=09(002) +3(.04) + 1 =1.138

and
a(8) = (64a + 8b + 1)(1 + .05(8 — 6)) = [64(.002) + 8(.04) + 1](1.1) = 1.5928,

this is equal to $714.4650929 ~ $714.47.



(9) Note that

Since

we find

fn) =inyi +1=
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a(n+1)—a(m)  amn) an+1)
a(n) a(n) — a@)

a(t):efé’s’d' for 2<n <7,

f(n) = ef(;'+15rdr/ef(;'5rdr
frd ef:+15rdr

ntl _4 dr

= e/n r—I
1
— A=t

— @M=l [(r—1)*

1





