Savitch, Absolute Java 6/e: Chapter 1, Instructor’s Manual

Chapter 1
Getting Started
Key Terms

intermediate language
byte-code
code
OOP
object
method
class
application program
applet
applet viewer
println
System.out.println
invoking
dot
argument
sending a message
variable int
equal sign
assignment operator
high-level language
low-level language
machine language
compiler
byte-code
Java Virtual Machine
interpreter
run command
source code
object code
code
.java files
javac
.class files
running a Java program
bug
debugging
syntax error
run-time error
logic error
identifier
case-sensitive
keyword
declare
floating-point number
primitive type
assignment statement
assignment operator
uninitialized variable
assigning int values to double values
integers
booleans
literals,
constants
e notation
quotes
mixing types
integer division
% operator
type coercion
v++ versus ++v
decrement operator
String
+ operator
concatenation

class
object
method
method call
method invocation
argument
sending a message
length
position
index
backslash
escape sequence
immutable object
ASCII
Unicode
// comments
line comments
/*comments*/
block comments
when to comment
self-documenting
Brief Outline

1.1 Introduction to Java

Origins of the Java Language

Objects and Methods

Applets

A Sample Java Application Program

Byte-Code and the Java Virtual Machine

Class Loader

Compiling a Java Program or Class

Running a Java Program

1.2 Expressions and Assignment Statements

Identifiers

Variables

Assignment Statements

More Assignment Statements

Assignment Compatibility

Constants

Arithmetic Operators and Expressions

Parentheses and Precedence Rules

Integer and Floating-Point Division

Type Casting

Increment and Decrement Operators

1.3 The Class String

String Constants and Variables

Concatenation of Strings

Classes

String Methods

Escape Sequences

String Processing

The Unicode Character Set

1.4 Program Style

Naming Constants

Java Spelling Conventions

Comments

Indenting

Teaching Suggestions

This chapter introduces the students to the history of the Java language and begins to tell them about what types of programs can be written in Java as well as the basic structure of a Java program. During the discussions on compilation and running a program, care should be taken to explain the process on the particular computer system that the students will be using, as different computing/development environments will each have their own specific directions that will need to be followed. What is especially important to note is that the basic unit of programming in Java is a class – every Java program is a class.

Simple programming elements are then introduced, starting with simple variable declarations and assignment statements, and eventually evolving into arithmetic expressions and String manipulation. Primitive data types are introduced as well. If time allows, a discussion of how the computer stores data is appropriate. While some of the operations on the primitives are familiar to students, operations like modulas (mod, %) are usually not and require additional explanation. Also, the functionality of the increment and decrement operators requires attention. The issue of type casting is also introduced, which syntactically as well as conceptually can be difficult for students.

Strings are introduced as the first object that students will be using. The distinction between an object and a primitive value should be discussed, as well as the distinction between an object and a class. Strings have operations that can be applied to them, but they also have methods that can be called on them. The ability to have methods is what makes an object so much different than a primitive value.

The last section on programming style further introduces the ideas of conventions for naming of programmatic entities and the use and importance of commenting source code. Commenting is a skill that students will need to develop and they should begin commenting their code from the first program that they complete. Indentation is also discussed. However, many development environments actually handle this automatically.

Key Points

Compiler. The compiler is the program that translates source code into a language that a computer can understand. This process is different in Java than some other high-level languages. Java translates its source code into byte-code using the javac command. Students should be exposed to how the javac command gets executed in the particular development environment. Also, since javac is a program that can be run at the command prompt if using a Unix environment.

Byte-Code. The compiler generates byte-code that is then interpreted by the Java Virtual Machine. This process occurs when the student uses the java command to execute the program. Once again, how this command is executed will vary depending on computing environments, and java is also a program that can be run at the command prompt. The interpretation of the byte-code by the Java Virtual Machine is the reason Java is considered so portable. The byte-code that is generated by the Java compiler is always the same no matter what the machine or operating system. As long as the Java Virtual Machine is loaded onto a computer, that computer can interpret the byte-code generated by the compiler. This second computer can be a different type or even running a different operating system than the one that originally compiled the source code and the byte-code will still be correctly interpreted.

Syntax and Semantics. When discussing any programming language, we describe both the rules for writing the language, often referred to as its grammar, as well as the interpretation of what has been written. The first is the syntax of the language, while the second is the semantics of the language. For syntax, we have a compiler that will tell us when we have made a mistake. We can correct the error and try compiling again. However, the bigger challenge may lie in the understanding of what the code actually means. There is no “compiler” for telling us if the code that is written will do what we want it to, and this is when the code does not do what we want, it most often takes longer to fix than a simple syntax error.

Names (Identifiers). Java has specific rules for how you can name an entity in a program. These rules are compiler enforced, but students should be able to recognize a correct or incorrect identifier. Also, there are common conventions for how Java names its programming entities. Class names begin with a capital letter followed by lower case letters. All other entities have names that begin with a lower case letter. However, these conventions are not compiler enforced. The book and the source code for Java itself use these conventions and it is helpful for students to understand that if they follow them, their code is easier for others to read.

Variable Declarations. Java requires that all variables be declared before they are used. The declaration consists of the type of the variable as well as the name. You can declare more than one variable per line.

Assignment Statements with Primitive Types. To assign a value to a variable whose type is a primitive, we use the assignment operator, which is the equals (=) sign. Assignment occurs by first evaluating the expression on the right hand side of the equals sign and then assigning the value to the variable on the left. Confusion usually arises for students when assigning the value of one variable to another. Showing that x = y is not the same as y = x is helpful when trying to clear up this confusion.

Initializing a Variable in a Declaration. We can and should give our variables an initial value when they are declared. This is achieved through the use of the assignment operator. We can assign each variable a value on separate lines or we can do multiple assignments in one line as shown on page 19.

Assignment Compatibility. Normally, we can only assign values to a variable that are of the same type as we declared the variable to be. For example, we can assign an integer value to an integer variable. However, we can also assign a byte value to an integer due to the following ordering:

byte -> short -> int -> long -> float -> double

Values on the left can be assigned to variables whose types are to the right. You cannot go in the other direction. In fact, the compiler will give an error if you do.

What is Doubled? This discussion concerns how floating-point numbers are stored inside the computer. A related topic would be to show the conversion of these numbers into the format that the computer uses.

The String Class. Java has many predefined classes that are always available for you to use. String is one of these. A String object can be represented by a sequence of alpha-numeric characters written inside of quotes (“). You can create variables of type String and assign values to them using the assignment operator just as we have seen with the primitive types. There are also operations defined on Strings, which will be defined in the next section.
Using the + sign with Strings. The operator + can be used with Strings to “add” two Strings together. This is commonly called concatenation and using this operator is similar to what students have seen with the primitive types. Strings also have methods, which are used in a different way than has been seen up until this point.
Classes, Objects, and Methods. This is the section where the class/object distinction needs to be addressed. The distinction is important for students to understand. The idea of an object having methods that can be called or invoked is terminology that will be introduced at this time. The syntax of calling a method should also be discussed. There are many methods that are defined in the String class that can make for interesting examples of how to call methods and what they do. These methods are summarized in Display 1.4.

Returned Value. One of the things a method can do is return a value. When we call a method, we are asking the object to do something for us. The returned value is the result of that action. We can use the returned value in later computation if we wish.
Naming Constants. Program style is important and varies from one person to another. However, having programmatic style standards makes programs easier to read for everyone. One of these style points can be the naming of constants in the program. The convention that is introduced is the one that is common to Java and the text.

Tips

Error Messages. One of the most frustrating parts of learning how to program is learning to understand the error messages of the compiler. These errors, which are commonly called syntax errors, frustrate students. It is helpful to show some common error messages from the compiler so that students have a frame of reference when they see the errors again themselves. Also important for students to note is that even though Java states the line number that the error occurred on, it is not always accurate. Run-time errors occur when the program has been run. These most commonly take the form of exceptions in Java. For this section, creating a simple statement that divides by zero can generate one such error. The last type of error, a logic error is one that is hardest to spot because on the surface the program runs fine, but does not produce the correct result. Writing some statements that are supposed to compute sales tax for your area can show these, but instead of multiplying the total by the percentage of sales tax, the division sign is substituted.

Initialize Variables. Variables that are declared but not assigned a value are uninitialized. It is good programming practice to always initialize your variables. In some cases, variables may be assigned a default value, however, one should not count on this occurring. Uninitialized variables used in computation can cause errors in your program and the best way to avoid these errors is to always give variables an initial value. This can most easily be done right when the variable is declared.

Pitfalls

Round-off Errors in Floating-Point Numbers. One of the places to show the fallibility of computers is in the round-off errors that we experience when using floating point numbers. This topic relates to why the type is named double and also deals with the representation of floating point numbers in the system. This problem occurs because not all floating-point numbers are finite, a common example being the decimal representation of the fraction 1/3. Because we can only store so many digits after the decimal points, our computation is not always accurate. A discussion of when this type of round off error could be a problem would be appropriate to highlight some of the shortcomings of computing.

Division with Whole Numbers. In Java, all of the arithmetic operations are closed within their types. Therefore, division of two integers will produce an integer, which will produce an answer that most students do not expect. For example, the integer 1 divided by the integer 2 will produce the integer 0. Students will expect 0.5. One way to get a floating-point answer out of integer division is to use typecasting. Another way is to force floating-point division by making one of the integers a floating-point number by placing a “.0” at the end. Experimentation with this issue is important to show the different results that can be obtained from integer division.

Programming Projects Answers

1.

/**

 * Question1.java

 *

 * This program calculates the amount of energy expended

 * using the concept of metabolic equivalents. The formula

 * used is Calories/Minute = 0.0175 * MET * WeightInKilos

 * One Kg = 2.2 Pounds

 * Created: Sat Mar 05 2005

 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question1

{

// Constants for the program's execution

private static final double POUNDS_TO_KG = 1 / 2.2;

private static final double WEIGHT_IN_LBS = 150;

private static final double RUNNING_METS = 10;

private static final double BASKETBALL_METS = 8;

private static final double SLEEPING_METS = 1;

private static final double TIME_RUNNING = 30;

private static final double TIME_BASKETBALL = 30;

private static final double TIME_SLEEPING = 60*6; // Calculate in minutes

public static void main(String[] args)

{

 // Variable declarations

 double weight_kg;

 double TotalCalories, RunningCalories, BasketballCalories, SleepingCalories;

 System.out.println("Welcome to the calorie calculator.");

 System.out.println("For a " + WEIGHT_IN_LBS + " person:");

 weight_kg = POUNDS_TO_KG * WEIGHT_IN_LBS;

 RunningCalories = 0.0175 * RUNNING_METS * weight_kg * TIME_RUNNING;

 System.out.println("This person burned an estimated " + RunningCalories +

" Calories Running.");

 BasketballCalories = 0.0175 * BASKETBALL_METS * weight_kg *

 TIME_BASKETBALL;

 System.out.println("This person burned an estimated " + BasketballCalories +

" Calories playing basketball.");

 SleepingCalories = 0.0175 * SLEEPING_METS * weight_kg * TIME_SLEEPING;

 System.out.println("This person burned an estimated " + SleepingCalories +

" Calories sleeping.");

 TotalCalories = RunningCalories + BasketballCalories + SleepingCalories;

 System.out.println("Total calories expended = " + TotalCalories);

}

} // Question 1

2.

/**

 * Question2.java

 *

 * This program computes the number of candy bars and gumballs you

 * can get by redeeming coupons at an arcade. 10 coupons is

 * redeemable for candy bars and 3 coupons for gumballs. You

 * would like as many candy bars as possible and only use

 * remaining coupons on gumballs.

 *

 * Created: Sat Mar 05 2005

 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question2

{

public static void main(String[] args)

{

 // Variable declarations

 int num_coupons = 108;
// If we have 108 coupons; change variable as desired

 int num_coupons_after_candybars = 0;

 int num_coupons_after_gumballs = 0;

 int num_candy_bars = 0;

 int num_gumballs = 0;

 System.out.println("Candy calculator.");

 // Integer division below discards any remainder

 num_candy_bars = num_coupons / 10;

 // Calculate remaining coupons

 num_coupons_after_candybars = num_coupons % 10;

 // Calculate gumballs

 num_gumballs = num_coupons_after_candybars / 3;

 // Calculate any leftover coupons

 num_coupons_after_gumballs = num_coupons_after_candybars % 3;

 // Output the number of candy bars and gumballs

 System.out.println("Your " + num_coupons + " coupons can be redeemed for " +

 num_candy_bars + " candy bars and " +

 num_gumballs + " gumballs with " +

 num_coupons_after_gumballs + " coupons leftover.");

}

} // Question 2

3.

/**

 * Question3.java

 *

 * This program outputs a name in lowercase to a name in Pig Latin

 * with the first letter of each name capitalized.

 *

 * Created: Sat Mar 05 2005

 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question3

{

public static void main(String[] args)

{

 // Variable declarations

 String first = "walt";

 String last = "savitch";

 System.out.println(first + " " + last + " turned to Pig Latin is:");

 // First convert first name to pig latin

 String pigFirstName = first.substring(1,first.length()) + first.substring(0,1) + "ay";

 // Then capitalize first letter

 pigFirstName = pigFirstName.substring(0,1).toUpperCase() +

pigFirstName.substring(1,pigFirstName.length());

 // Repeat for the last name

 String pigLastName = last.substring(1,last.length()) + last.substring(0,1) + "ay";

 // Then capitalize first letter

 pigLastName = pigLastName.substring(0,1).toUpperCase() +

pigLastName.substring(1,pigLastName.length());

 System.out.println(pigFirstName + " " + pigLastName);

}

} // Question 3

4.

/**

 * Question4.java

 *

 * Created: Sat Nov 08 15:41:53 2003

 * Modified: Sat Mar 05 2005, Kenrick Mock

 *

 * @author Adrienne Decker

 * @version 2

 */

public class Question4

{

 public static final int AMT_NEEDED_TO_KILL_MOUSE_GRAMS = 30;

 public static final int MOUSE_WEIGHT_LBS = 1;

 public static final int DIETER_GOAL_WEIGHT_LBS = 210;

 public static final int WEIGHT_OF_CAN_SODA_GRAMS = 30;

 public static final double AMT_SWEETNR_IN_SODA = 0.001;

 public static void main(String[] args)

{

 double amountPerCanGrams = (double)WEIGHT_OF_CAN_SODA_GRAMS *

 AMT_SWEETNR_IN_SODA;

 double proportionSwtnrBodyWeight =

 (double) (AMT_NEEDED_TO_KILL_MOUSE_GRAMS / MOUSE_WEIGHT_LBS);

 double amtNeededToKillFriend = proportionSwtnrBodyWeight *

 DIETER_GOAL_WEIGHT_LBS;

 double cansOfSoda = amtNeededToKillFriend * amountPerCanGrams;

 System.out.println("You should not drink more than " +

 cansOfSoda + " cans of soda.");

 }

} // Question4

5.

/**

 * Question5.java

 *

 *

 * Created: Sat Nov 08 16:04:41 2003

 * Modified: Sat Mar 05 2005, Kenrick Mock

 *

 * @author Adrienne Decker

 * @version 2

 */

public class Question5

{

 public static final String sentence = "I hate programming.";

 public static void main (String[] args)

 {

 int position = sentence.indexOf("hate");

 String firstPart = sentence.substring(0, position);

 String afterHate = sentence.substring(position + 4);

 String newString = firstPart + "love" + afterHate;

 System.out.println("The line of text to be changed is: ");

 System.out.println(sentence);

 System.out.println("I have rephrased the line to read:");

 System.out.println(newString);

 } // end of main ()

}// Question5

6.
/**

 * Question6.java

 *

 * This program calculates the speed of a bike based on the cadence

 * and gear ratio.

 *

 * Created: Sat Mar 15 2009

 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question6

{

public static void main(String[] args)

{

double mph;

// Speed in miles per hour

double gearSize = 100; // Inches

double cadence = 90;
// RPM or Revolutions Per Minute

// Multiple gearSize by PI by cadence then convert inches to miles and

// minutes to hours

mph = gearSize * Math.PI * cadence * (1.0 / 12) * (1.0 / 5280) * 60;

System.out.println("With a gear size of " + gearSize + " and " +

 "a cadence of " + cadence + " you will bike " +

 mph + " miles per hour.");

}

}// Question 6

7.

/**

 * Question7.java

 *

 * This program outputs the number of hours, minutes,

 * and seconds that corresponds to 50391 total seconds.

 * The output should be 13 hours, 59 minutes, and 51 seconds.

 *

 * Created: Sat Mar 15 2009

 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question7

{

public static void main(String[] args)

{

int hours, minutes, seconds; // These are calculated

int totalSeconds = 50391;

// 3600 seconds per hour; use integer division

hours = totalSeconds / 3600;

// Get remaining seconds after hours are

// accounted for and then divide by 60

// to get minutes

minutes = (totalSeconds % 3600) / 60;

// Get remaining seconds after minutes are

// accounted for. Could just % 60 since

// 60 divides into 3600.

seconds = (totalSeconds % 3600) % 60;

System.out.println(totalSeconds + " seconds is " +

 hours + " hours, " +

 minutes + " minutes, " +

 seconds + " seconds.");

}

} // Question 7

8.

/**

 * Question8.java

 *

 * The code is cleaned up using the conventions described

 * in the book.

 *

 * Created: Sat Mar 15 2009

 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question8

{

// List constants first, in uppercase

public static final double DISTANCE = 6.21;

public static void main(String[] args)

{

// Use lowercase for variables.

// Each variable on a separate line.

double time;

double pace;

System.out.println("This program calculates your " +

"pace given a time and distance traveled.");

time = 35.5; // 35 minutes and 30 seconds

pace = time / DISTANCE;

System.out.println("Your pace is " + pace + " miles per hour.");

}

} // Question 8

/**

 * Question9.java

 *

 * Estimate ideal body weight.

 *

 * Created: Fri Apr 27 2014
 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question9

{

public static void main(String[] args)

{

int heightFeet = 5;

int heightInches = 5;

System.out.println("Your ideal body weight is ");

int weight = 110 + ((heightFeet - 5)*12 + heightInches) * 5;

System.out.println(weight + " pounds.");

}

} // Question 9

/**

 * Question10.java

 *

 * Estimate fatal dose of caffeine in mg

 *

 * Created: Tue May 19 2015

 *

 * @author Kenrick Mock

 * @version 1

 */

public class Question10

{

public static void main(String[] args)

{

int mgCaffeinePerDrink = 160;

int mgFatal = 10 * 1000; // Convert 10 grams to milligrams

int drinksFatal = mgFatal / mgCaffeinePerDrink;

System.out.println("It will take approximately " + drinksFatal +

" drinks at " + mgCaffeinePerDrink +

" mg of caffeine per drink to be lethal.");

}

} // Question 10
Copyright © 2016 Pearson Education Inc. All rights reserved.

