
SOLUTIONS TO CHAPTER 1 

 

Problem 1.1 

(a)  Since the growth rate of a variable equals the time derivative of its log, as shown by equation (1.10) 

in the text, we can write 

(1)  
  ( )

( )

ln ( ) ln ( ) ( )Z t

Z t

d Z t

dt

d X t Y t

dt
  . 

Since the log of the product of two variables equals the sum of their logs, we have 

(2)  
  ( )

( )

ln ( ) ln ( ) ln ( ) ln ( )Z t

Z t

d X t Y t

dt

d X t

dt

d Y t

dt



  , 

or simply 

(3)  
 ( )

( )

 ( )

( )

 ( )

( )

Z t

Z t

X t

X t

Y t

Y t
  . 

 

(b)  Again, since the growth rate of a variable equals the time derivative of its log, we can write 

(4)  
  ( )

( )

ln ( ) ln ( ) ( )Z t

Z t

d Z t

dt

d X t Y t

dt
  . 

Since the log of the ratio of two variables equals the difference in their logs, we have 

(5)  
  ( )

( )

ln ( ) ln ( ) ln ( ) ln ( )Z t

Z t

d X t Y t

dt

d X t

dt

d Y t

dt



  , 

or simply 

(6)  
 ( )

( )

 ( )

( )

 ( )

( )

Z t

Z t

X t

X t

Y t

Y t
  . 

 

(c)  We have 

(7)  
 ( )

( )

ln ( ) ln[ ( ) ]Z t

Z t

d Z t

dt

d X t

dt
 



. 

Using the fact that ln[X(t) ] = lnX(t), we have 

(8)  
  ( )

( )

ln ( ) ln ( )  ( )

( )

Z t

Z t

d X t

dt

d X t

dt

X t

X t
  


  , 

where we have used the fact that  is a constant. 

 

Problem 1.2 

(a)  Using the information provided in the question, 

the path of the growth rate of X,  ( ) ( )X t X t , is 

depicted in the figure at right. 

 

From time 0 to time t1 , the growth rate of X is 

constant and equal to a > 0.  At time t1 , the growth 

rate of X drops to 0.  From time t1 to time t2 , the 

growth rate of X rises gradually from 0 to a.  Note that 

we have made the assumption that  ( ) ( )X t X t  rises at 

a constant rate from t1 to t2 .  Finally, after time t2 , the 

growth rate of X is constant and equal to a again. 
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     Solutions to Chapter 1 1-2 

(b)  Note that the slope of lnX(t) plotted against time 

is equal to the growth rate of X(t).  That is, we know 

     
d X t

dt

X t

X t

ln ( )  ( )

( )
  

(See equation (1.10) in the text.) 

 

From time 0 to time t1 the slope of lnX(t) equals  

a > 0.  The lnX(t) locus has an inflection point at t1 , 

when the growth rate of X(t) changes discontinuously 

from a to 0.  Between t1 and t2 , the slope of lnX(t) 

rises gradually from 0 to a.  After time t2 the slope of 

lnX(t) is constant and equal to a > 0 again. 

 

Problem 1.3 

(a)  The slope of the break-even investment line is 

given by (n + g + ) and thus a fall in the rate of 

depreciation, , decreases the slope of the break-

even investment line. 

 

The actual investment curve, sf(k) is unaffected. 

 

From the figure at right we can see that the balanced-

growth-path level of capital per unit of effective 

labor rises from k* to k*NEW . 

 

 

 

 

(b)  Since the slope of the break-even investment 

line is given by (n + g + ), a rise in the rate of 

technological progress, g, makes the break-even 

investment line steeper. 

 

The actual investment curve, sf(k), is unaffected. 

 

From the figure at right we can see that the 

balanced-growth-path level of capital per unit of 

effective labor falls from k* to k*NEW . 
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(c)  The break-even investment line, (n + g + )k, is 

unaffected by the rise in capital's share, . 

 

The effect of a change in  on the actual investment 

curve, sk, can be determined by examining the 

derivative (sk)/.  It is possible to show that 

(1)  klnsk
sk 







. 

For 0 <  < 1, and for positive values of k, the sign 

of (sk)/ is determined by the sign of lnk.  For  

lnk > 0, or k > 1,  


sk  0 and so the new actual 

investment curve lies above the old one.  For  

lnk < 0 or k < 1,  


sk  0  and so the new actual investment curve lies below the old one.  At k = 1, 

so that lnk = 0, the new actual investment curve intersects the old one. 

 

In addition, the effect of a rise in  on k* is ambiguous and depends on the relative magnitudes of s and  

(n + g + ).  It is possible to show that a rise in capital's share, , will cause k* to rise if s > (n + g + ).  

This is the case depicted in the figure above. 

 

(d)  Suppose we modify the intensive form of the 

production function to include a non-negative 

constant, B, so that the actual investment curve is 

given by sBf(k), B > 0. 

 

Then workers exerting more effort, so that output 

per unit of effective labor is higher than before, can 

be modeled as an increase in B.  This increase in B 

shifts the actual investment curve up. 

 

The break-even investment line, (n + g + )k, is 

unaffected. 

 

From the figure at right we can see that the balanced-growth-path level of capital per unit of effective 

labor rises from k* to k*NEW . 

 

Problem 1.4 

(a)  At some time, call it t0 , there is a discrete upward jump in the number of workers.  This reduces the 

amount of capital per unit of effective labor from k* to kNEW .  We can see this by simply looking at the 

definition, k  K/AL .   An increase in L without a jump in K or A causes k to fall.  Since f ' (k) > 0, this 

fall in the amount of capital per unit of effective labor reduces the amount of output per unit of effective 

labor as well.  In the figure below, y falls from y* to yNEW . 
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(b)  Now at this lower kNEW , actual 

investment per unit of effective 

labor exceeds break-even investment 

per unit of effective labor.  That is, 

sf(kNEW ) > (g + )kNEW .  The 

economy is now saving and 

investing more than enough to offset 

depreciation and technological 

progress at this lower kNEW .  Thus k 

begins rising back toward k*.  As 

capital per unit of effective labor 

begins rising, so does output per unit 

of effective labor.  That is, y begins 

rising from yNEW back toward y*. 

 

(c)  Capital per unit of effective labor will continue to rise until it eventually returns to the original level 

of k*.  At k*, investment per unit of effective labor is again just enough to offset technological progress 

and depreciation and keep k constant.  Since k returns to its original value of k* once the economy again 

returns to a balanced growth path, output per unit of effective labor also returns to its original value of 

 y* = f(k*). 

 

Problem 1.5 

(a)  The equation describing the evolution of the capital stock per unit of effective labor is given by 

(1)   ( ) ( )k sf k n g k    . 

Substituting in for the intensive form of the Cobb-Douglas, f(k) = k, yields 

(2)   ( )k sk n g k   


 . 

On the balanced growth path, k  is zero; investment per unit of effective labor is equal to break-even 

investment per unit of effective labor and so k remains constant.  Denoting the balanced-growth-path 

value of k as k*, we have sk* = (n + g + )k*.  Rearranging to solve for k* yields 

(3)   k s n g* ( )
( )

  



1 1

. 

To get the balanced-growth-path value of output per unit of effective labor, substitute equation (3) into 

the intensive form of the production function, y = k: 

(4)   y s n g* ( )
( )

  



 1

. 

Consumption per unit of effective labor on the balanced growth path is given by c* = (1 - s)y*.  

Substituting equation (4) into this expression yields 

(5)   c s s n g* ( ) ( )
( )

   


1
1


 

. 

 

(b)  The golden-rule level of the capital stock is that level at which consumption per unit of effective 

labor is maximized.  To derive this level of k, take equation (3), which expresses the balanced-growth-

path level of k, and rearrange it to solve for s: 

(6)  s = (n + g + )k*1-. 

Now substitute equation (6) into equation (5): 

(7)    c n g k n g k n g* ( ) * ( ) * ( )
( )

       
  

1
1 1 1

  
   

. 

After some straightforward algebraic manipulation, this simplifies to 

(8)  c* = k* - (n + g + )k*. 
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  Solutions to Chapter 1 1-5 

Equation (8) states that consumption per unit of effective labor is equal to output per unit of effective 

labor, k*, less actual investment per unit of effective labor.  On the balanced growth path, actual 

investment per unit of effective labor is the same as break-even investment per unit of effective labor, 

(n + g + )k*. 

 

Now use equation (8) to maximize c* with respect to k*.  The first-order condition is given by 

(9)     


c k k n g* * * ( )    
1

0, 

or simply 

(10)  k*-1 = (n + g + ). 

Note that equation (10) is just a specific form of the general condition that implicitly defines the golden-

rule level of capital per unit of effective labor, given by f ' (k*) = (n + g + ).  Equation (10) has a 

graphical interpretation: it defines the level of k at which the slope of the intensive form of the 

production function is equal to the slope of the break-even investment line.  Solving equation (10) for the 

golden-rule level of k yields 

(11)   k n gGR* ( )
( )

  


 
1 1

. 

 

(c)  To get the saving rate that yields the golden-rule level of k, substitute equation (11) into (6): 

(12)   s n g n gGR     
 

( ) ( )
( ) ( )

  
 1 1

, 

which simplifies to 

(13)  sGR = . 

With a Cobb-Douglas production function, the saving rate required to reach the golden rule is equal to 

the elasticity of output with respect to capital or capital's share in output (if capital earns its marginal 

product). 

 

Problem 1.6 

(a)  Since there is no technological progress, we can carry out the entire analysis in terms of capital and 

output per worker rather than capital and output per unit of effective labor.  With A constant, they behave 

the same.  Thus we can define y  Y/L and k  K/L. 

 

The fall in the population growth rate makes the 

break-even investment line flatter.  In the 

absence of technological progress, the per unit 

time change in k, capital per worker, is given 

by  ( ) ( )k sf k n k   .  Since k  was 0 before 

the decrease in n – the economy was on a 

balanced growth path – the decrease in n causes 
k  to become positive.  At k*, actual investment 

per worker, sf(k*), now exceeds break-even 

investment per worker, (nNEW + )k*.  Thus k 

moves to a new higher balanced growth path 

level.  See the figure at right. 

 

As k rises, y – output per worker – also rises.  

Since a constant fraction of output is saved, c – 

consumption per worker – rises as y rises.  This 

is summarized in the figures below. 
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     Solutions to Chapter 1 1-6 

 

 

(b)  By definition, output can be written as  

Y  Ly.  Thus the growth rate of output is  
  Y Y L L y y  .  On the initial balanced growth 

path, y y  0 – output per worker is constant – so 
 Y Y L L n  .  On the final balanced growth 

path, y y  0 again – output per worker is 

constant again – and so  Y Y L L n nNEW   .  

In the end, output will be growing at a 

permanently lower rate. 

 

 

 

What happens during the transition?  Examine the production function Y = F(K,AL).  On the initial 

balanced growth path AL, K and thus Y are all growing at rate n.  Then suddenly AL begins growing at 

some new lower rate nNEW.  Thus suddenly Y will be growing at some rate between that of K (which is 

growing at n) and that of AL (which is growing at nNEW).  Thus, during the transition, output grows more 

rapidly than it will on the new balanced growth path, but less rapidly than it would have without the 

decrease in population growth.  As output growth gradually slows down during the transition, so does 

capital growth until finally K, AL, and thus Y are all growing at the new lower nNEW. 

 

Problem 1.7 

The derivative of y* = f(k*) with respect to n is given by 

(1)  y*/n = f '(k*)[k*/n]. 

To find k*/n, use the equation for the evolution of the capital stock per unit of effective labor, 
 ( ) ( )k sf k n g k    .  In addition, use the fact that on a balanced growth path, k  0 , k = k* and thus 

sf(k*) = (n + g + )k*.  Taking the derivative of both sides of this expression with respect to n yields 

(2)  sf k
k

n
n g

k

n
k    ( *)

*
( )

*
*








, 

and rearranging yields 

(3)  


 

k

n

k

sf k n g

* *

( *) ( )


   
. 

Substituting equation (3) into equation (1) gives us 

(4)  


 

y

n
f k

k

sf k n g

*
( *)

*

( *) ( )
 

   









. 
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Rearranging the condition that implicitly defines k*, sf(k*) = (n + g + )k*, and solving for s yields 

(5)  s = (n + g + )k*/f(k*). 

Substitute equation (5) into equation (4): 

(6)  


  

y

n

f k k

n g f k k f k n g

* ( *) *

[( ) ( *) * / ( *)] ( )




     
. 

To turn this into the elasticity that we want, multiply both sides of equation (6) by n/y*: 

(7)  
n

y

y

n

n

n g

f k k f k

f k k f k*

*

( )

( *) * / ( *)

[ ( *) * / ( *)]



 


 



 1
. 

Using the definition that K (k*)  f '(k*)k*/f(k*) gives us 

(8)  
n

y

y

n

n

n g

k

k

K

K*

*

( )

( *)

( *)



 




 

  











1
. 

 

Now, with K (k*) = 1/3, g = 2% and  = 3%, we need to calculate the effect on y* of a fall in n from 2% 

to 1%.  Using the midpoint of n = 0.015 to calculate the elasticity gives us 

(9)  
n

y

y

n*

*
.

( . . . )

/

/
.




 

  









  

0 015

0 015 0 02 0 03

1 3

1 1 3
012 . 

So this 50% drop in the population growth rate, from 2% to 1%, will lead to approximately a 6% increase 

in the level of output per unit of effective labor, since (-0.50)(-0.12) = 0.06.  This calculation illustrates 

the point that observed differences in population growth rates across countries are not nearly enough to 

account for differences in y that we see. 

 

Problem 1.8 

(a)  A permanent increase in the fraction of output that is devoted to investment from 0.15 to 0.18 

represents a 20 percent increase in the saving rate.  From equation (1.28) in the text, the elasticity of 

output with respect to the saving rate is 

(1)  
s

y

y

s

k

k

K

K*

* ( *)

( *)










1
, 

where K (k*) is the share of income paid to capital (assuming that capital is paid its marginal product). 

 

Substituting the assumption that K (k*) = 1/3 into equation (1) gives us 

(2)  
s

y

y

s

k

k

K

K*

* ( *)

( *)
















1

1 3

1 1 3

1

2
. 

Thus the elasticity of output with respect to the saving rate is 1/2.  So this 20 percent increase in the 

saving rate – from s = 0.15 to sNEW = 0.18 – causes output to rise relative to what it would have been by 

about 10 percent.  [Note that the analysis has been carried out in terms of output per unit of effective 

labor.  Since the paths of A and L are not affected, however, if output per unit of effective labor rises by 

10 percent, output itself is also 10 percent higher than what it would have been.] 

 

(b)  Consumption rises less than output.  Output ends up 10 percent higher than what it would have been.  

But the fact that the saving rate is higher means that we are now consuming a smaller fraction of output.  

We can calculate the elasticity of consumption with respect to the saving rate.  On the balanced growth 

path, consumption is given by 

(3)  c* = (1 - s)y*. 

Taking the derivative with respect to s yields 
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(4)  








c

s
y s

y

s

*
* ( )

*
   1 . 

To turn this into an elasticity, multiply both sides of equation (4) by s/c*: 

(5)  








c

s

s

c

y s

s y
s
y

s

s

s y

*

*

*

( ) *
( )

*

( ) *





 

1
1

1
, 

where we have substituted c* = (1 - s)y* on the right-hand side.  Simplifying gives us 

(6)  








c

s

s

c

s

s

y

s

s

s y

*

* ( )

*

( ) *







1 1
. 

 

From part (a), the second term on the right-hand side of (6), the elasticity of output with respect to the 

saving rate, equals 1/2.  We can use the midpoint between s = 0.15 and sNEW = 0.18 to calculate the 

elasticity: 

(7)  




c

s

s

c

*

*

.

( . )
. .




 

0165

1 0165
05 0 30. 

Thus the elasticity of consumption with respect to the saving rate is approximately 0.3.  So this 20% 

increase in the saving rate will cause consumption to be approximately 6% above what it would have 

been. 

 

(c)  The immediate effect of the rise in investment as a fraction of output is that consumption falls.  

Although y* does not jump immediately – it only begins to move toward its new, higher balanced-

growth-path level – we are now saving a greater fraction, and thus consuming a smaller fraction, of this 

same y*.  At the moment of the rise in s by 3 percentage points – since c = (1 - s)y* and y* is unchanged 

– c falls.  In fact, the percentage change in c will be the percentage change in (1 - s).  Now, (1 - s) falls 

from 0.85 to 0.82, which is approximately a 3.5 percent drop.  Thus at the moment of the rise in s, 

consumption falls by about three and a half percent. 

 

We can use some results from the text on the speed of convergence to determine the length of time it 

takes for consumption to return to what it would have been without the increase in the saving rate.  After 

the initial rise in s, s remains constant throughout.  Since c = (1 - s)y, this means that consumption will 

grow at the same rate as y on the way to the new balanced growth path.  In the text it is shown that the 

rate of convergence of k and y, after a linear approximation, is given by  = (1 - K )(n + g +).  With 

(n + g + ) equal to 6 percent per year and K = 1/3, this yields a value for of about 4 percent.  This 

means that k and y move about 4 percent of the remaining distance toward their balanced-growth-path 

values of k* and y* each year.  Since c is proportional to y, c  = (1 - s)y, it also approaches its new 

balanced-growth-path value at that same constant rate.  That is, analogous to equation (1.31) in the text, 

we could write 

(8)  c t c e c cK n g t
( ) * [ ( ) *]

( )( )
  

   1
0

 
, 

or equivalently 

(9)  e
c t c

c c

t






 ( ) *

( ) *0
. 

The term on the right-hand side of equation (9) is the fraction of the distance to the balanced growth path 

that remains to be traveled. 

 

We know that consumption falls initially by 3.5 percent and will eventually be 6 percent higher than it 

would have been.  Thus it must change by 9.5 percent on the way to the balanced growth path.  It will 

therefore be equal to what it would have been about 36.8 percent (3.5%/9.5%  36.8%) of the way to the 

new balanced growth path.  Equivalently, this is when the remaining distance to the new balanced growth 
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path is 63.2 percent of the original distance.  To determine the length of time this will take, we need to 

find a t* that solves 

(10)  632.0e *t 
. 

Taking the natural logarithm of both sides of equation (10) yields 

(11)  -t* = ln(0.632). 

Rearranging to solve for t gives us 

(12)  t* = 0.459/0.04, 

and thus 

(13)  t*  11.5  years. 

It will take a long time – over a decade – for consumption to return to what it would have been in the 

absence of the increase in investment as a fraction of output. 

 

Problem 1.9 

(a)  Define the marginal product of labor to be w  F(K,AL)/L.  Then write the production function as  

Y = ALf(k) = ALf(K/AL).  Taking the partial derivative of output with respect to L yields 

(1)  w  Y/L = ALf ' (k)[-K/AL2 ] + Af(k) = A[(-K/AL)f ' (k) + f(k)] = A[f(k) - kf ' (k)], 

as required. 

 

(b)  Define the marginal product of capital as r  [F(K,AL)/K] - .  Again, writing the production 

function as Y = ALf(k) = ALf(K/AL) and now taking the partial derivative of output with respect to K 

yields 

(2)  r  [Y/K] -  = ALf ' (k)[1/AL] -  = f ' (k) - . 

Substitute equations (1) and (2) into wL + rK: 

(3)  wL + rK = A[f(k) - kf ' (k)] L + [f ' (k) - ]K = ALf(k) - f ' (k)[K/AL]AL + f ' (k)K - K. 

Simplifying gives us 

(4)  wL + rK = ALf(k) - f ' (k)K + f ' (k)K - K = Alf(k) - K  ALF(K/AL, 1) - K. 

Finally, since F is constant returns to scale, equation (4) can be rewritten as 

(5)  wL + rK = F(ALK/AL, AL) - K = F(K, AL) - K. 

 

(c)  As shown above, r = f '(k) - .  Since  is a constant and since k is constant on a balanced growth 

path, so is f '(k) and thus so is r.  In other words, on a balanced growth path, r r  0.  Thus the Solow 

model does exhibit the property that the return to capital is constant over time. 

 

Since capital is paid its marginal product, the share of output going to capital is rK/Y.  On a balanced 

growth path, 

(6)  
 
 

rK Y

rK Y
r r K K Y Y n g n g



   ( ) ( )        0 0. 

Thus, on a balanced growth path, the share of output going to capital is constant.  Since the shares of 

output going to capital and labor sum to one, this implies that the share of output going to labor is also 

constant on the balanced growth path. 

 

We need to determine the growth rate of the marginal product of labor, w, on a balanced growth path.  As 

shown above, w = A[f(k) - kf '(k)].  Taking the time derivative of the log of this expression yields the 

growth rate of the marginal product of labor: 

(7)  
 
 

   ( ) (


)

( ) ( )

( )   ( ) ( ) 

( ) ( )

( ) 

( ) ( )

w

w

A

A

f k kf k

f k kf k
g

f k k kf k kf k k

f k kf k
g

kf k k

f k kf k
 

 

 
 

    

 
 

 

 
. 
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. 

. 

. 

On a balanced growth path k  0 and so w w g .  That is, on a balanced growth path, the marginal 

product of labor rises at the rate of growth of the effectiveness of labor. 

 

(d)  As shown in part (c), the growth rate of the marginal product of labor is 

(8)  
 ( ) 

( ) ( )

w

w
g

kf k k

f k kf k
 

 

 
. 

If k < k*, then as k moves toward k*, w w g .  This is true because the denominator of the second term 

on the right-hand side of equation (8) is positive because f(k) is a concave function.  The numerator of 

that same term is positive because k and k  are positive and f '' (k) is negative.  Thus, as k rises toward k*, 

the marginal product of labor grows faster than on the balanced growth path.  Intuitively, the marginal 

product of labor rises by the rate of growth of the effectiveness of labor on the balanced growth path.  As 

we move from k to k*, however, the amount of capital per unit of effective labor is also rising which also 

makes labor more productive and this increases the marginal product of labor even more. 

 

The growth rate of the marginal product of capital, r, is 

(9)  
  (


)

( )

( ) 

( )

r

r

f k

f k

f k k

f k










. 

As k rises toward k*, this growth rate is negative since f ' (k) > 0, f '' (k) < 0 and k  > 0.  Thus, as the 

economy moves from k to k*, the marginal product of capital falls.  That is, it grows at a rate less than on 

the balanced growth path where its growth rate is 0. 

 

Problem 1.10 

(a)  The growth rate of the capital-output ratio is given by 

(1)  
Y

Y

K

K

)Y/K(

)Y/K(



. 

Differentiating the production function, Y = F(K,AL), with respect to time gives us 

(2)  )AL(FKFY ALK   . 

Dividing both sides of equation (2) by Y yields 

(3)  
AL

)AL(

Y

ALF

K

K

Y

KF

Y

Y ALK 


. 

Defining αK ≡ FKK/Y, which is capital’s share of income, and using the fact that the production function 

exhibits constant returns to scale allows us to write 

(4)  
AL

)AL(
)1(

K

K

Y

Y
KK 


.  

Since A grows at rate g and L grows at rate n, this becomes 

(5)  )gn)(1(
K

K

Y

Y
KK 


. 

Substituting equation (5) into equation (1) yields 

(6)  







 )gn(

K

K
)1()gn)(1(

K

K

K

K

)Y/K(

)Y/K(
KKK


. 

Thus, the growth rate of the capital-output ratio is positive, i.e. K/Y is rising, if and only if the growth 

rate of the capital stock exceeds n + g. Since k ≡ K/AL, when K is growing faster than the growth rate of 

AL, which is n + g, k is rising. So, equivalently, K/Y is rising if and only if k is rising. 
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(b)  The solution to part (a) shows us that we can examine the behavior of K/Y by looking at the behavior 

of k. The equation describing the evolution of the capital stock per unit of effective labor in the standard 

version of the Solow model is given by 

(7)   ( ) ( )k sf k n g k    . 

The assumption here that capital’s share of income is saved implies that s = FKK/Y. Since FK = f′(k), this 

implies s=f′(k)k/f(k). Thus, equation (7) can be written as 

(8)  k)gn(k)k(fk  . 

Dividing both sides of (8) by k gives us an expression for the growth rate of capital per unit of effective 

labor, 

(9)  )gn()k(f
k

k



. 

From equation (9), we can see that if the marginal product of capital, which equals f′(k), is strictly greater 

than (n + g + δ) at time t = 0, k̇/k will be positive and so k will rise over time. As shown in the solution to 

part (a), if k is rising so is K/Y. Thus, K/Y rises over time. But since f″(k) < 0, f′(k) falls as k rises. 

Eventually f′(k) will fall to (n + g + δ), at which point k becomes constant. The solution to part (a) 

implies that K/Y will also become constant at that point. In summary, K/Y gradually approaches a 

constant value from below. 

 

(c)  The solution to part (b) shows that K/Y does not grow without bound. The key is that the return to 

capital is decreasing in k. As capital accumulates, the return to capital falls, and so capital accumulates 

more slowly. Eventually, the return to capital falls so much that capital income, and thus savings, is just 

enough to offset depreciation, population growth, and growth in efficiency and so K/Y becomes constant. 

 

(d)  With a Cobb-Douglas production function, Y = Kα(AL)1-α, the marginal product of capital is given by 

(10)  




 11 )AL(K
K

Y
. 

Thus, we can write net capital income, NCI, as 

(11)  KY])AL(K[K
K

Y
KNCI 11 













  . 

Taking the ratio of net capital income to net output, NI, gives us 

(12)  
KY

KY

NI

NCI




 . 

Dividing the top and bottom of the right-hand-side of equation (12) by Y yields 

(13)  
Y/K1

Y/K

NI

NCI




 . 

Differentiating the ratio of net capital income to net output with respect to the capital-output ratio, K/Y, 

gives us 

(14)  
2]Y/K1[

])[Y/K()Y/K1]([

Y/K

NI/NCI









, 

which simplifies to 

(15)  0
]Y/K1[

)1(

]Y/K1[

Y/KY/K

Y/K

NI/NCI

22

22















. 

Equation (15) implies that as K/Y rises over time and gradually approaches a constant level, the ratio of 

net capital income to net output is falling. So the common statement that an excess of the return to capital 

over the economy’s growth rate causes capital’s share to rise over time is not correct in this case.  
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Problem 1.11 

(a)  The elasticity of substitution between capital and effective labor is given by 

(1)  
)F/Flog(

)AL/Klog(

)F/Flog(

)AL/Klog(

ALKKAL 







 . 

This can be rewritten as 

(2)  
)Flog(

)Y/Klog(

K


 . 

The share of net capital income in net output is given by 

(3)  










K/Y

F

KY

)F(K

NI

NCI KK . 

To see the direction of the response of NCI/NI to changes in K, we can examine the derivative of NCI/NI 

with respect to FK since we know that 0KFK  . We have 

(4)  
 2

KK

K K/Y

]F/)K/Y()[F()K/Y](1[

F

)NI/NCI(









. 

Equation (4) simplifies to 

(5)  
  K

2
K

K F

)K/Y(

K/Y

)F(

K/Y

1

F

)NI/NCI(
















. 

From equation (2), we have 

(6)  
KKK F

)Y/K(

F

)K/Y(

)Flog(

)K/Ylog(









 . 

Solving for KF)K/Y(  gives us 

(7)  
KK F

)K/Y(

F

)K/Y(





. 

Substituting equation (7) into equation (5) yields 

(8)  
  K

2
K

K F

K/Y

K/Y

)F(

K/Y

1

F

)NI/NCI(












. 

Thus, a marginal increase in K will increase the share of net capital income in net output if this 

expression is negative. 

 

(b)  We require a solution for σ such that 

(9)  
 

0
F

K/Y

K/Y

)F(

K/Y

1

K
2

K 






. 

Substituting in the parameter values that we are given yields 

(10)  
 

0
08.0

3/1

03.03/1

05.0

03.03/1

1

2






, 

or simply 

(11)  

 

.456.1

08.0

3/1

03.03/1

05.0
03.03/1

1

2





  

Thus, the elasticity of substitution must be greater than 1.456 for the share of net capital income in net 

output to rise when K rises. 

 



  Solutions to Chapter 1 1-13 

Problem 1.12 

A balanced growth path occurs when all the variables of the model are growing at constant rates. Despite 

the differences between this model and the usual Solow model, it turns out that we can again show that 

the economy will converge to a balanced growth path by examining the behavior of k  K/AL. 

 

Taking the time derivative of both sides of the definition of k  K/AL gives us 

(1)  
 



















 
















A

A

L

L
k

AL

K

AL

LAAL

AL

K

AL

K

)AL(

LAALK)AL(K

AL

K
k

2


 . 

Since factors are paid their marginal product and all income other than labor income is saved, we can 

write the capital-accumulation equation in this version of the model as 

(2)  KKFK K  , 

where FK is the marginal product of capital. Substituting equation (2) and the constant growth rates of the 

labor force and technology,  L L n and A A g  , into equation (1) yields 

(3)  k)gn(kFk)gn(
AL

KKF
k K

K 


 . 

The marginal product of capital, FK, equals f '(k) and so we can rewrite equation (3) as  

(4)    ( ) ( )k f k n g k     . 

 

Capital per unit of effective labor will be constant when k  0, i.e. when [f ' (k) - (n + g + )] k = 0. This 

condition holds if k = 0 (a case we will ignore) or f ' (k) - (n + g + ) = 0. Thus the balanced-growth-path 

level of the capital stock per unit of effective labor is implicitly defined by f '(k*) = (n + g + ). Since 

capital per unit of effective labor, k  K/AL, is constant on the balanced growth path, K must grow at the 

same rate as AL, which grows at rate n + g. Since the production function has constant returns to capital 

and effective labor, which both grow at rate n + g on the balanced growth path, output must also grow at 

rate n + g on the balanced growth path. Thus we have found a balanced growth path where all the 

variables of the model grow at constant rates. 

 

The next step is to show that the economy converges to this balanced growth path. At k = k*, 

f ' (k) = (n + g +). If k > k*, f ' (k) < (n + g + ). This follows from the assumption that f '' (k) < 0 which 

means that f ' (k) falls as k rises. Thus, if k > k*, we have k  0 so that k will fall toward its balanced-

growth-path value. If k < k*, f ' (k) > (n + g + ). Again, this follows from the assumption that f '' (k) < 0 

which means that f ' (k) rises as k falls. Thus, if k < k*, we have k  0 so that k will rise toward its 

balanced-growth-path value. Thus, regardless of the initial value of k (if it is not zero), the economy will 

converge to a balanced growth path at k*, where all the variables in the model are growing at constant 

rates. 

 

The golden-rule level of k – the level of k that maximizes consumption per unit of effective labor – is 

defined implicitly by f '(kGR) = (n +g + ). This occurs when the slope of the production function equals 

the slope of the break-even investment line. Note that this is exactly the level of k that the economy 

converges to in this model where all labor income is consumed and all other income is saved. Intuitively, 

saving equals capital's contribution to output, which is the marginal product of capital times the amount 

of capital. If that contribution exceeds break-even investment, (n + g + )k, then k rises. If it is less than 

break-even investment, k falls. Thus, k settles down to a point where saving, the marginal product of 

capital times k, equals break-even investment, (n + g + )k. That is, the economy settles down to a point 

where f ' (k)k = (n + g + )k or equivalently f ' (k) = (n + g + ). 
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Problem 1.13 

We know that y  is determined by k but since k = g(y), where g(•) = f –1(•), we can write )y(yy   .  

When k = k* and thus y = y*, y =0.  A first-order Taylor-series approximation of )y(y  around y = y* 

therefore yields 

(1)  *)yy(
y

y
y

*yy
























 . 

Let  denote 
*yy

y)y(y


  .  With this definition, equation (1) becomes 

(2)  *]y)t(y[)t(y  . 

Equation (2) implies that in the vicinity of the balanced growth path, y moves toward y* at a speed 

approximately proportional to its distance from y*.  That is, the growth rate of y(t) – y* is approximately 

constant and equal to -.  This implies 

(3)  *]y)0(y[e*y)t(y t   , 

where y(0) is the initial value of y.  We now need to determine . 

 

Taking the time derivative of both sides of the production function, 

(4)  y = f(k), 

yields 

(5)  k)k(fy   . 

The equation of motion for capital is given by 

(6)  k)gn()k(sfk  . 

Substituting equation (6) into equation (5) yields 

(7)  ]k)gn()k(sf)[k(fy  . 

Equation (7) expresses y  in terms of k.  But k = g(y) where g(•) = f –1(•).  Thus we can write 

(8)  









































 *yy*yy*yy
y

k

k

y

y

y 
. 

Taking the derivative of y  with respect to k gives us 

(9)  )]gn()k(fs)[k(f]k)gn()k(sf)[k(f
k

y




 
. 

On the balanced growth path, sf(k*) = (n + g + )k* and thus 

(10)  )]gn(*)k(fs*)[k(f
k

y

*yy









. 

 

Now, since k = g(y) where g(•) = f –1(•), 

(11)  
*)k(f

1

k

y

1

y

k

*yy

*yy

















. 

Substituting equations (10) and (11) into equation (8) yields 

(12)  
*)k(f

1
)]gn(*)k(fs*)[k(f

y

y

*yy










, 

or simply 
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(13)  )gn(*)k(fs
y

y

*yy









. 

And thus 

(14)  *)k(fs)gn(
y

y

*yy










. 

Since s = (n + g + )k*/f(k*) on the balanced growth path, we can rewrite (14) as 

(15)  
*)k(f

*)k(f*k)gn(
)gn(

y

y

*yy












. 

Now use the definition that K  kf '(k)/f(k) to rewrite (15) as 

(16)  )gn(*)]k(1[
y

y
K

*yy










. 

Thus y converges to its balanced-growth-path value at rate )gn(*)]k(1[ K  , the same rate at 

which k converges to its balanced-growth-path value. 

 

Problem 1.14 

(a)  The production function with capital-augmenting technological progress is given by 

(1)   Y t A t K t L t( ) ( ) ( ) ( )
 1

. 

Dividing both sides of equation (1) by A(t)/(1 - )L(t) yields 

(2)  
Y t

A t L t

A t K t

A t L t

L t

A t L t

( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )
( ) ( ) ( )   



 



1 1 1

1

  





















 , 

and simplifying: 

(3)  
Y t

A t L t

A t K t

L t
A t

A t A t K t

L t

( )

( ) ( )

( ) ( )

( )
( )

( ) ( ) ( )

( )( )

( ) ( )

 

  


  

1

1 1 1 1 1



 


  



























, 

and thus finally 

(4)  
Y t

A t L t

K t

A t L t

( )

( ) ( )

( )

( ) ( )
( ) ( )   



1 1 









 . 

Now, defining   /(1 - ), k(t)  K(t)/A(t)L(t) and y(t)  Y(t)/A(t)L(t) yields 

(5)  y(t) = k(t). 

 

To analyze the dynamics of k(t), take the time derivative of both sides of k(t)  K(t)/A(t)L(t): 

(6)  
   

 
 ( )

 ( ) ( ) ( ) ( ) ( )  ( ) ( )  ( ) ( )

( ) ( )

k t
K t A t L t K t A t A t L t L t A t

A t L t


 

  




1

2
, 

(7)   ( )
 ( )

( ) ( )

( )

( ) ( )

 ( )

( )

 ( )

( )
k t

K t

A t L t

K t

A t L t

A t

A t

L t

L t
  









 

 , 

and then using k(t)  K(t)/A(t)L(t),  ( ) ( )A t A t   and  ( ) ( )L t L t n  yields 

(8)   ( )  ( ) ( ) ( ) ( ) ( )k t K t A t L t n k t  


 . 

The evolution of the total capital stock is given by the usual 

(9)   ( ) ( ) ( )K t sY t K t  . 
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Substituting equation (9) into (8) gives us 

(10)   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k t sY t A t L t K t A t L t n k t sy t n k t       
 

    . 

Finally, using equation (5), y(t) = k(t), we have 

(11)  ( ) ( ) ( ) ( )k t sk t n k t   


  . 

 

Equation (11) is very similar to the basic 

equation governing the dynamics of the Solow 

model with labor-augmenting technological 

progress.  Here, however, we are measuring in 

units of A(t)L(t) rather than in units of 

effective labor, A(t)L(t).  Using the same 

graphical technique as with the basic Solow 

model, we can graph both components of  ( )k t .  

See the figure at right. 

 

When actual investment per unit of A(t)L(t), 

sk(t), exceeds break-even investment per unit 

of A(t)L(t), given by ( + n + )k(t), k will 

rise toward k*.  When actual investment per 

unit of A(t)L(t) falls short of break-even investment per unit of A(t)L(t), k will fall toward k*.  Ignoring 

the case in which the initial level of k is zero, the economy will converge to a situation in which k is 

constant at k*.  Since y = k, y will also be constant when the economy converges to k*. 

 

The total capital stock, K, can be written as ALk.  Thus when k is constant, K will be growing at the 

constant rate of  + n.  Similarly, total output, Y, can be written as ALy.  Thus when y is constant, 

output grows at the constant rate of  + n as well.  Since L and A grow at constant rates by assumption, 

we have found a balanced growth path where all the variables of the model grow at constant rates. 

 

(b)  The production function is now given by 

(12) Y t J t L t( ) ( ) ( )
 1

. 

Define J t( )   J(t)/A(t).  The production function can then be written as 

(13)   Y t A t J t L t( ) ( ) ( ) ( )
 1

. 

Proceed as in part (a).  Divide both sides of equation (13) by A(t)/(1 - )L(t) and simplify to obtain 

(14)  
Y t

A t L t

J t

A t L t

( )

( ) ( )

( )

( ) ( )
( ) ( )   



1 1 









 . 

Now, defining   /(1 - ), j t( )   J t( ) /A(t)L(t) and y(t)  Y(t)/A(t)L(t) yields 

(15)  y(t) = j t( ) . 

In order to analyze the dynamics of j t( ) , take the time derivative of both sides of j t( )   J t( ) /A(t)L(t): 

(16)  
   

 



( ) ( ) ( ) ( ) ( )  ( ) ( )  ( ) ( )

( ) ( )

j
J t A t L t J t A t A t L t L t A t

A t L t


 

  




1

2
, 

(17)  

( )


( )

( ) ( )

( )

( ) ( )

 ( )

( )

 ( )

( )
j t

J t

A t L t

J t

A t L t

A t

A t

L t

L t
  









 

 , 

  

             ( + n + )k(t) 

 

 

 

            sk(t) 

 

 

 

 

 

 

 

 

           k*     k(t)  K(t)/A(t)L(t) 
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and then using j t( )   J t( ) /A(t)L(t),  ( ) ( )A t A t   and  ( ) ( )L t L t n  yields 

(18)  

( )


( ) ( ) ( ) ( ) ( )j t J t A t L t n j t  


 . 

 

The next step is to get an expression for 

( )J t .  Take the time derivative of both sides of J t J t A t( ) ( ) ( ) : 

(19)  ( )
( ) ( ) ( )  ( )

( )

( )

( )

 ( )

( )

( )

( )
J t

J t A t J t A t

A t

J t

A t

A t

A t

J t

A t



 

2
. 

Now use J t J t A t( ) ( ) ( ) ,  ( ) ( )A t A t   and ( ) ( ) ( ) ( )J t sA t Y t J t   to obtain 

(20)  ( )
( ) ( )

( )

( )

( )
( )J t

sA t Y t

A t

J t

A t
J t  


 , 

or simply 

(21)  

( ) ( ) ( ) ( )J t sY t J t    . 

Substitute equation (21) into equation (18): 

(22)   
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j t sY t A t L t J t A t L t n j t sy t n j t               1 . 

Finally, using equation (15), y(t) = j t( )  , we have 

(23)   
( ) ( ) ( ) ( )j t sj t n j t       1 . 

Using the same graphical technique as in the basic Solow model, we can graph both components of 

( )j t . 

 

See the figure at right.  Ignoring the 

possibility that the initial value of j  is 

zero, the economy will converge to a 

situation where j  is constant at j *.  

Since y = j , y will also be constant 

when the economy converges to j *. 

 

The level of total output, Y, can be 

written as ALy.  Thus when y is 

constant, output grows at the constant 

rate of   + n.   

 

By definition, J A Lj


.  Once the 

economy converges to the situation 

where j  is constant, J  grows at the 

constant rate of  + n.  Since J  J A, the effective capital stock, J, grows at rate  + n +  or n + (1 + 

).  Thus the economy does converge to a balanced growth path where all the variables of the model are 

growing at constant rates. 

 

(c)  On the balanced growth path, 

( )j t  = 0 and thus from equation (23): 

(24)     sj n j j s n
 

             


( ) ( )1 1
1

, 

and thus 

(25)    j s n* ( )
( )

   


  


1
1 1

. 

Substitute equation (25) into equation (15) to get an expression for output per unit of A(t)L(t) on the 

balanced growth path: 

  

 

       [n +  +(1 + )] j t( )  

 

                 s j t( ) 

 

 

 

 

 

 

 
 

 

             j*             j t J t A t L t( ) ( ) ( ) ( ) 
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(26)    y s n* ( )
( )

   


  
 

1
1

. 

Take the derivative of y* with respect to s: 

(27)  
   







      

 
y

s

s

n n

*
( )









   











  











 

1 1

1

1

1 1

. 

In order to turn this into an elasticity, multiply both sides by s/y* using the expression for y* from 

equation (26) on the right-hand side: 

(28)  
     







         

   
y

s

s

y

s

n n
s

s

n

*

*

( ) ( )









   











  











  











   

1 1

1

1 1

1 1 1

. 

Simplifying yields 

(29)  
 

 









  

  

y

s

s

y

n

s

s

n

*

*










  









  











1

1

1
, 

and thus finally 

(30)  








y

s

s

y

*

*


1
. 

 

(d)  A first-order Taylor approximation of y  around the balanced-growth-path value of y = y* will be of 

the form 

(31)     *
*

y y y y y
y y

 


  . 

Taking the time derivative of both sides of equation (15) yields 

(32)   
y j j



 1

. 

Substitute equation (23) into equation (32): 

(33)     ( )y j sj n j    


   
 1

1 , 

or 

(34)    y s j j n    


    
 2 1

1 . 

Equation (34) expresses y  in terms of j .  We can express j  in terms of y: since y = j , we can write  

j  = y1/.  Thus  y /y evaluated at y = y* is given by 

(35)    











     



    
( ) ( )

* * *

( ) ( )y

y

y

j

j

y
s j j n y

y y y y y y  

  





























     







2 1 1

12 1 2 1 1
. 

Now, y(1 - )/ is simply j 1 -  since y = j  and thus 

(36)    



         

    
( ) ( ) ( ) ( )

*

( ) ( ) ( )y

y
s j j n s j n

y y

      
           2 1 1 2 1 1

2 1 1 1 1 1
. 

 

Finally, substitute out for s by rearranging equation (25) to obtain  s j n   
1

1


  ( )  and thus 

(37)     



       

 
( ) ( ) ( )

*

y

y
j n j n

y y

 
        

1 1
1 2 1 1 , 

or simply 

(38)   



   


( ) ( )

*

y

y
n

y y

     1 1 . 
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Substituting equation (38) into equation (31) gives the first-order Taylor expansion: 

(39)      ( ) ( ) *y n y y     1 1    . 

Solving this differential equation (as in the text) yields 

(40)  
   y t y e y y
n

( ) * ( ) *
( ) ( )

  
   1 1

0
  

. 

This means that the economy moves fraction (1 - )[n +  + (1 + )] of the remaining distance toward 

y* each year. 

 

(e)  The elasticity of output with respect to s is the same in this model as in the basic Solow model.  The 

speed of convergence is faster in this model.  In the basic Solow model, the rate of convergence is given 

by (1 - )[n +  + ], which is less than the rate of convergence in this model, (1 - )[n +  + (1 + )], 

since   /(1 - ) is positive. 

 

Problem 1.15 

(a)  The growth-accounting technique of Section 1.7 yields the following expression for the growth rate 

of output per person: 

(1)  
 ( )

( )

 ( )

( )
( )

 ( )

( )

 ( )

( )
( )

Y t

Y t

L t

L t
t

K t

K t

L t

L t
R tK  









  , 

where K (t) is the elasticity of output with respect to capital at time t and R(t) is the Solow residual. 

Now imagine applying this growth-accounting equation to a Solow economy that is on its balanced 

growth path.  On the balanced growth path, the growth rates of output per worker and capital per worker 

are both equal to g, the growth rate of A.  Thus equation (1) implies that growth accounting would 

attribute a fraction K of growth in output per worker to growth in capital per worker.  It would attribute 

the rest – fraction (1 - K ) – to technological progress, as this is what would be left in the Solow 

residual.  So with our usual estimate of K = 1/3, growth accounting would attribute about 67 percent of 

the growth in output per worker to technological progress and about 33 percent of the growth in output 

per worker to growth in capital per worker. 

 

(b)  In an accounting sense, the result in part (a) would be true, but in a deeper sense it would not: the 

reason that the capital-labor ratio grows at rate g on the balanced growth path is because the effectiveness 

of labor is growing at rate g.  That is, the growth in the effectiveness of labor – the growth in A – raises 

output per worker through two channels.  First, by directly raising output but also by (for a given saving 

rate) increasing the resources devoted to capital accumulation and thereby raising the capital-labor ratio.  

Growth accounting attributes the rise in output per worker through the second channel to growth in the 

capital-labor ratio, and not to its underlying source.  Thus, although growth accounting is often 

instructive, it is not appropriate to interpret it as shedding light on the underlying determinants of growth. 

 

Problem 1.16 

(a)  Ordinary least squares (OLS) yields a biased estimate of the slope coefficient of a regression if the 

explanatory variable is correlated with the error term.  We are given that 

(1)          ln ln ln
* *

Y N Y N a b Y N
1979 1870 1870

    , and 

 

(2)       ln ln
*

Y N Y N u
1870 1870

  , 

 

where  and u are assumed to be uncorrelated with each other and with the true unobservable 1870 

income per person variable, ln[(Y/N)1870]*. 
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Substituting equation (2) into (1) and rearranging yields 

(3)            ln ln ln ( )Y N Y N a b Y N b u
1979 1870 1870

1      . 

 

Running an OLS regression on model (3) will yield a biased estimate of b if ln[(Y/N)1870] is correlated 

with the error term, [ - (1 + b)u].  In general, of course, this will be the case since u is the measurement 

error that helps to determine the value of ln[(Y/N)1870] that we get to observe.  However, in the special 

case in which the true value of b = -1, the error term in model (3) is simply .  Thus OLS will be unbiased 

since the explanatory variable will no longer be correlated with the error term. 

 

(b)  Measurement error in the dependent variable will not cause a problem for OLS estimation and is, in 

fact, one of the justifications for the disturbance term in a regression model.  Intuitively, if the 

measurement error is in 1870 income per capita, the explanatory variable, there will be a bias toward 

finding convergence.  If 1870 income per capita is overstated, growth is understated.  This looks like 

convergence: a "high" initial income country growing slowly.  Similarly, if 1870 income per capita is 

understated, growth is overstated.  This also looks like convergence: a "low" initial income country 

growing quickly. 

 

Suppose instead that it is only 1979 income per capita that is subject to random, mean-zero measurement 

error.  When 1979 income is overstated, so is growth for a given level of 1870 income.  When 1979 

income is understated, so is growth for a given 1870 income.  Either case is equally likely: overstating 

1979 income for any given 1870 income is just as likely as understating it (or more precisely, 

measurement error is on average equal to zero).  Thus there is no reason for this to systematically cause 

us to see more or less convergence than there really is in the data. 

 

Problem 1.17 

On a balanced growth path, K and Y must be growing at a constant rate.  The equation of motion for 

capital,  ( ) ( ) ( )K t sY t K t  , implies the growth rate of K is 

(1)  
 ( )

( )

( )

( )

K t

K t
s
Y t

K t
  . 

As in the model in the text, Y/K must be constant in order for the growth rate of K to be constant.  That 

is, the growth rates of Y and K must be equal. 

 

Taking logs of both sides of the production function,  Y t K t R t T t A t L t( ) ( ) ( ) ( ) ( ) ( )
       1

, yields 

(2)  lnY(t) = lnK(t) + lnR(t) + lnT(t) + (1 -  -  - )[lnA(t) + lnL(t)]. 

Differentiating both sides of (2) with respect to time gives us 

(3)   g t g t g t g t g t g tY K R T A L( ) ( ) ( ) ( ) ( ) ( ) ( )            1 . 

Substituting in the facts that the growth rates of R, T, and L are all equal to n and the growth rate of A is 

equal to g gives us 

(4)  g t g t n n n gY K( ) ( ) ( )( )            1 . 

Simplifying gives us 
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Using the fact that gY and gK must be equal on a balanced growth path leaves us with 

(6) gY = gY + (1 - )n + (1 -  -  - )g, 

(7)  (1 - )gY = (1 - )n + (1 -  -  - )g, 
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and thus the growth rate of output on the balanced growth path is given by 
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The growth rate of output per worker on the balanced growth path is 
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Using equation (8) and the fact that L grows at rate n, we can write 
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And thus finally 
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Equation (11) is identical to equation (1.50) in the text. 

 


