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CHAPTER 1 
 
1.1  We will illustrate two different methods for solving this problem: (1) separation of variables, and (2) 
Laplace transform. 
 
dv c

g v
dt m

   

 
Separation of variables: Separation of variables gives 
 

1
dv dt

c
g v

m



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The integrals can be evaluated as 
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/

c
g v

m
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c m
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where C = a constant of integration, which can be evaluated by applying the initial condition to yield 
 

ln (0)
 

/

c
g v

m
C

c m
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which can be substituted back into the solution 
 

ln ln (0)
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c c
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This result can be rearranged algebraically to solve for v, 
 

 ( / ) ( / )(0) 1c m t c m tmg
v v e e

c
     

 
where the first part is the general solution and the second part is the particular solution for the constant 
forcing function due to gravity. For the case where, v(0) = 0, the solution reduces to Eq. (1.10) 
 

 ( / )1 c m tmg
v e

c
    

 
Laplace transform solution: An alternative solution is provided by applying Laplace transform to the 
differential equation to give 
  

( ) (0) ( )
g c

sV s v V s
s m

    

 
Solve algebraically for the transformed velocity 
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The second term on the right of the equal sign can be expanded with partial fractions 
 

( / )

( / ) / ( / )

g A B A s c m Bs

s s c m s s c m s s c m

 
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  
     (2) 

 
By equating like terms in the numerator, the following must hold 
 

                         0
c

g A As Bs
m

    

 
The first equation can be solved for A = mg/c. According to the second equation, B = –A, so B = –mg/c. 
Substituting these back into (2) gives 
 

/ /

( / ) /

g mg c mg c

s s c m s s c m
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This can be substituted into Eq. 1 to give 
 

(0) / /
( )

/ /

v mg c mg c
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Taking inverse Laplace transforms yields 
 

( / ) ( / )( ) (0) c m t c m tmg mg
v t v e e

c c
     

 
or collecting terms 
 

 ( / ) ( / )( ) (0) 1c m t c m tmg
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c
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1.2 At t = 8 s, the analytical solution is 41.137 (Example 1.1). The relative error can be calculated with 
 

analytical numerical
absolute relative error  100%

analytical


   

 
The numerical results are: 
 

step v(8) 
absolute

relative error 
2 44.8700 9.074% 
1 42.8931 4.268% 

0.5 41.9901 2.073% 

 
The error versus step size can then be plotted as 
 



  3   

 
PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights reserved.  No part of this Manual 
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the 
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their 
individual course preparation.  If you are a student using this Manual, you are using it without permission. 

0%

2%

4%

6%

8%

10%

0 0.5 1 1.5 2 2.5
 

 
Thus, halving the step size approximately halves the error. 
 
1.3  (a) You are given the following differential equation with the initial condition, v(t = 0) = 0, 
 

2'
 

dv c
g v

dt m
 

 
Multiply both sides by m/c′ gives 
 

2

' '
 

m dv m
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Define / 'a mg c  
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Integrate by separation of variables, 
 

2 2

'

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dv c
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A table of integrals can be consulted to find that 
 

1
2 2

1
tanh

dx x

a aa x


  

 
Therefore, the integration yields 
 

11 '
tanh  

v c
t C

a a m
 

 
If v = 0 at t = 0, then because tanh–1(0) = 0, the constant of integration C = 0 and the solution is 
 

11 '
tanh 

v c
t

a a m
 

 
This result can then be rearranged to yield 
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 tanh
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gm gc
v t
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(b) Using Euler’s method, the first two steps can be computed as 
 

20.22
(2) 0 9.81 (0) 2 19.62

68.1
v

      
 

20.22
(4) 19.62 9.81 (19.62) 2 36.75284

68.1
v

      
 

 
The computation can be continued and the results summarized along with the analytical result as: 
 

t v-numerical dv/dt v-analytical
0 0 9.81 0 
2 19.62 8.56642 18.83093 
4 36.75284 5.446275 33.72377 
6 47.64539 2.476398 43.46492 
8 52.59819 0.872478 49.06977 

10 54.34314 0.269633 52.05938 
12 54.88241 0.079349 53.58978 
 55.10572 0.022993 55.10572 

 
A plot of the numerical and analytical results can be developed 
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1.4  ( / )( ) (1 )c m tgm
v t e

c
   

jumper #1: (12/70) 99.81(70)
( ) (1 ) 44.99204

12
v t e    

jumper #2: (15/80)9.81(80)
44.99204 (1 )

15
te   

0.187544.99204 52.32 52.32 te   
 

0.18750.14006 te  
 
ln 0.14006 0.1875t   

 
ln 0.14006

10.4836 s
0.1875

t  


 

 
1.5  Before the chute opens (t < 10), Euler’s method can be implemented as 
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10

( ) ( ) 9.81 ( )
80

v t t v t v t t
        

 

 
After the chute opens (t  10), the drag coefficient is changed and the implementation becomes 
 

60
( ) ( ) 9.81 ( )

80
v t t v t v t t

        
 

 
Here is a summary of the results along with a plot: 
 

Chute closed Chute opened
t v dv/dt t v dv/dt
0 -20.0000 12.3100 10 52.5723 -29.6192 
1   -7.6900 10.7713 11 22.9531 -7.4048 
2   3.0813 9.4248 12 15.5483 -1.8512 
3 12.5061 8.2467 13 13.6971 -0.4628 
4 20.7528 7.2159 14 13.2343 -0.1157 
5 27.9687 6.3139 15 13.1186 -0.0289 
6 34.2826 5.5247 16 13.0896 -0.0072 
7 39.8073 4.8341 17 13.0824 -0.0018 
8 44.6414 4.2298 18 13.0806 -0.0005 
9 48.8712 3.7011 19 13.0802 -0.0001 

   20 13.0800 0.0000 

-30

0

30

60

0 5 10 15 20

 
 
1.6 (a) This is a transient computation. For the period ending June 1: 
 
Balance = Previous Balance + Deposits – Withdrawals + Interest 
Balance = 1522.33 + 220.13 – 327.26 + 0.01(1522.33) = 1430.42 
 
The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:  
 

Date Deposit Withdrawal Interest Balance
1-May    $1,522.33 

 $220.13 $327.26 $15.22  
1-Jun    $1,430.42 

 $216.80 $378.51 $14.30  
1-Jul    $1,283.02 

 $450.35 $106.80 $12.83  
1-Aug    $1,639.40 

 $127.31 $350.61 $16.39  
1-Sep    $1,432.49 

 

(b) ( ) ( )
dB

D t W t iB
dt

     
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(c) for t = 0 to 0.5: 

220.13 327.26 0.01(1522.33) 91.91
dB

dt
       

(0.5) 1522.33 91.91(0.5) 1476.38B      

 
for t = 0.5 to 1: 

220.13 327.260 0.01(1476.38) 92.37
dB

dt
       

(0.5) 1476.38 92.37(0.5) 1430.19B      

 
The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:  
 

Date Deposit Withdrawal Interest dB/dt Balance
1-May $220.13 $327.26 $15.22 -$91.91 $1,522.33 

16-May $220.13 $327.26 $14.76 -$92.37 $1,476.38 
1-Jun $216.80 $378.51 $14.30 -$147.41 $1,430.19 

16-Jun $216.80 $378.51 $13.56 -$148.15 $1,356.49 
1-Jul $450.35 $106.80 $12.82 $356.37 $1,282.42 

16-Jul $450.35 $106.80 $14.61 $358.16 $1,460.60 
1-Aug $127.31 $350.61 $16.40 -$206.90 $1,639.68 

16-Aug $127.31 $350.61 $15.36 -$207.94 $1,536.23 
1-Sep     $1,432.26 

 
(d) As in the plot below, the results of the two approaches are very close. 
 

$1,200

$1,300

$1,400

$1,500

$1,600

$1,700

M M J A S

Bi-monthly

Monthly

 
 
1.7 (a) The first two steps are 
 

(0.1) 100 0.175(100)0.1 98.25 Bq/Lc      

(0.2) 98.25 0.175(98.25)0.1 96.5306 Bq/Lc      

 
The process can be continued to yield 

 
t c dc/dt 
0 100.0000 -17.5000 

0.1 98.2500 -17.1938 
0.2 96.5306 -16.8929 
0.3 94.8413 -16.5972 
0.4 93.1816 -16.3068 
0.5 91.5509 -16.0214 
0.6 89.9488 -15.7410 
0.7 88.3747 -15.4656 
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0.8 86.8281 -15.1949 
0.9 85.3086 -14.9290 
1 83.8157 -14.6678 

 
(b) The results when plotted on a semi-log plot yields a straight line 

4.4

4.5

4.6

0 0.2 0.4 0.6 0.8 1
 

The slope of this line can be estimated as 
 
ln(83.8157) ln(100)

0.17655
1


    

 
Thus, the slope is approximately equal to the negative of the decay rate. If we had used a smaller step size, 
the result would be more exact. 
 
1.8  

students
J s kJ

35 ind 80 20 min 60 3,360 kJ
ind s min 1000 J

     Q  

3

3

Mwt (101.325 kPa)(11m 8m 3m 35 0.075 m )(28.97 kg/kmol)
314.796 kg

(8.314 kPa m / (kmol K)((20 273.15)K)

   
  


PV

m
RT

 

students 3,360 kJ
14.86571 K

(314.796 kg)(0.718 kJ/(kg K))v

Q
T

mC
     

 
Therefore, the final temperature is 20 + 14.86571 = 34.86571oC. 
 
1.9 The first two steps yield 
 

2450 450
(0.5) 0 3 sin (0) 0.5  0 ( 0.36) 0.5 0.18

1250 1250
y

          
 

2450 450
(1) 0.18 3 sin (0.5) 0.5  0.18 ( 0.11176) 0.5 0.23588

1250 1250
y

            
 

 
The process can be continued to give the following table and plot: 
 

t y dy/dt t y dy/dt
0 0.00000 -0.36000 5.5 1.10271 0.17761 

0.5 -0.18000 -0.11176 6 1.19152 -0.27568 
1 -0.23588 0.40472 6.5 1.05368 -0.31002 

1.5 -0.03352 0.71460 7 0.89866 0.10616 
2 0.32378 0.53297 7.5 0.95175 0.59023 

2.5 0.59026 0.02682 8 1.24686 0.69714 
3 0.60367 -0.33849 8.5 1.59543 0.32859 
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3.5 0.43443 -0.22711 9 1.75972 -0.17657 
4 0.32087 0.25857 9.5 1.67144 -0.35390 

4.5 0.45016 0.67201 10 1.49449 -0.04036 
5 0.78616 0.63310    

 

-0.5
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0.5

1.0

1.5
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1.10 The first two steps yield 
 

1.5
2450 150(1 0)

(0.5) 0 3 sin (0) 0.5 0 0.12(0.5)  0.06
1250 1250

y
 

       
 

 

1.5
2450 150(1 0.06)

(1) 0.06 3 sin (0.5) 0.5 0.06 0.13887(0.5) 0.00944
1250 1250

y
 

        
 

 

 
The process can be continued to give 
 

t y dy/dt t y dy/dt
0 0.00000 -0.12000 5.5 1.61981 0.02876 

0.5 -0.06000 0.13887 6 1.63419 -0.42872 
1 0.00944 0.64302 6.5 1.41983 -0.40173 

1.5 0.33094 0.89034 7 1.21897 0.06951 
2 0.77611 0.60892 7.5 1.25372 0.54423 

2.5 1.08058 0.02669 8 1.52584 0.57542 
3 1.09392 -0.34209 8.5 1.81355 0.12227 

3.5 0.92288 -0.18708 9 1.87468 -0.40145 
4 0.82934 0.32166 9.5 1.67396 -0.51860 

4.5 0.99017 0.69510 10 1.41465 -0.13062 
5 1.33772 0.56419    

-0.5

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10
 

 
1.11 When the water level is above the outlet pipe, the volume balance can be written as 
 

2 1.5
out3sin ( ) 3( )

dV
t y y

dt
    
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In order to solve this equation, we must relate the volume to the level. To do this, we recognize that the 
volume of a cone is given by V = r2y/3. Defining the side slope as s = ytop/rtop, the radius can be related to 
the level (r = y/s) and the volume can be reexpressed as  
 

3
23

V y
s


  

 
which can be solved for 
 

2
3 3s V

y


            

           (1) 
and substituted into the volume balance 
 

1.5
2

2 3
out

3
3sin ( ) 3

dV s V
t y

dt 

 
   
 
 

       (2) 

 
For the case where the level is below the outlet pipe, outflow is zero and the volume balance simplifies to  
 

23sin ( )
dV

t
dt

           (3) 

 
These equations can then be used to solve the problem. Using the side slope of s = 4/2.5 = 1.6, the 

initial volume can be computed as 
 

3 3
2

(0) 0.8 0.20944 m
3(1.6)

V


   

 
For the first step, y < yout and Eq. (3) gives 
 

2(0) 3sin (0) 0
dV

dt
    

 
and Euler’s method yields 
 

(0.5) (0) (0) 0.20944 0(0.5) 0.20944
dV

V V t
dt

       

 
For the second step, Eq. (3) still holds and 
 

2(0.5) 3sin (0.5) 0.689547
dV

dt
    

(1) (0.5) (0.5) 0.20944 0.689547(0.5) 0.554213
dV

V V t
dt

       

 
Equation (1) can then be used to compute the new level, 
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2
3 3(1.6) (0.554213)

1.106529 my


      

 
Because this level is now higher than the outlet pipe, Eq. (2) holds for the next step 
 

 1.5
(1) 2.12422 3 1.106529 1 2.019912

dV

dt
       

(1.5) 0.554213 2.019912(0.5) 1.564169V     

 
The remainder of the calculation is summarized in the following table and figure. 
 

t Qin V y Qout dV/dt
0 0 0.20944 0.8 0 0 

0.5 0.689547 0.20944 0.8 0 0.689547 
1 2.12422 0.554213 1.106529 0.104309 2.019912 

1.5 2.984989 1.564169 1.563742 1.269817 1.715171 
2 2.480465 2.421754 1.809036 2.183096 0.29737 

2.5 1.074507 2.570439 1.845325 2.331615 -1.25711 
3 0.059745 1.941885 1.680654 1.684654 -1.62491 

3.5 0.369147 1.12943 1.40289 0.767186 -0.39804 
4 1.71825 0.93041 1.31511 0.530657 1.187593 

4.5 2.866695 1.524207 1.55031 1.224706 1.641989 
5 2.758607 2.345202 1.78977 2.105581 0.653026 

5.5 1.493361 2.671715 1.869249 2.431294 -0.93793 
6 0.234219 2.202748 1.752772 1.95937 -1.72515 

6.5 0.13883 1.340173 1.48522 1.013979 -0.87515 
7 1.294894 0.902598 1.301873 0.497574 0.79732 

7.5 2.639532 1.301258 1.470703 0.968817 1.670715 
8 2.936489 2.136616 1.735052 1.890596 1.045893 

8.5 1.912745 2.659563 1.866411 2.419396 -0.50665 
9 0.509525 2.406237 1.805164 2.167442 -1.65792 

9.5 0.016943 1.577279 1.568098 1.284566 -1.26762 
10 0.887877 0.943467 1.321233 0.5462 0.341677 

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

V y
 

1.12 (a) The force balance can be written as: 
 

2

2
(0)

( )
d

dv R
m mg c v v

dt R x
  


 

 
Dividing by mass gives 
 

2

2
(0)

( )
dcdv R

g v v
dt mR x

  

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(b) Recognizing that dx/dt = v, the chain rule is 
 
dv dv

v
dt dx

  

 
Setting drag to zero and substituting this relationship into the force balance gives 
 

2

2

(0)

( )

dv g R

dx v R x
 


 

 
(c) Using separation of variables 
 

2

2
 (0)

( )

R
v dv g dx

R x
 


 

 
Integrating gives 
 

2 2

 (0)
2

v R
g C

R x
 


 

 
Applying the initial condition yields 
 

2 2
0  (0)
2 0

v R
g C

R
 


 

 
which can be solved for C = v0

2/2 – g(0)R, which can be substituted back into the solution to give 
 

22 2
0 (0) (0)

2 2

vv R
g g R

R x
  


 

 
or 
 

2
2
0 2 (0) 2 (0)

R
v v g g R

R x
   


 

 
Note that the plus sign holds when the object is moving upwards and the minus sign holds when it is 
falling. 
 
(d) Euler’s method can be developed as 
 

2

1 12

(0)
( ) ( ) ( )

( ) ( )
i i i i

i i

g R
v x v x x x

v x R x
 

 
    

  
 

 
The first step can be computed as 
 

6 2

6 2

9.81 (6.37 10 )
(10,000) 1,500 (10,000 0) 1,500 ( 0.00654)10,000 1434.600

1,500 (6.37 10 0)
v

 
        

  
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The remainder of the calculations can be implemented in a similar fashion as in the following table 
 

x v dv/dx v-analytical
0 1500.000 -0.00654 1500.000 

10000 1434.600 -0.00682 1433.216 
20000 1366.433 -0.00713 1363.388 
30000 1295.089 -0.00750 1290.023 
40000 1220.049 -0.00794 1212.475 
50000 1140.643 -0.00847 1129.884 
60000 1055.973 -0.00912 1041.049 
70000 964.798 -0.00995 944.206 
80000 865.317 -0.01106 836.579 
90000 754.742 -0.01264 713.299 

100000 628.359 -0.01513 564.197 

 
For the analytical solution, the value at 10,000 m can be computed as 
 

6 2
2 6

6

(6.37 10 )
1,500 2(9.81) 2(9.81)(6.37 10 ) 1433.216

(6.37 10 10,000)
v


    

 
 

 
The remainder of the analytical values can be implemented in a similar fashion as in the last column of the 
above table. The numerical and analytical solutions can be displayed graphically. 

0

400

800

1200

1600

0 20000 40000 60000 80000 100000

v-analytical

v-numerical

 
 
1.13 The volume of the droplet is related to the radius as 
 

34

3

r
V


           (1) 

 
This equation can be solved for radius as 
 

3
3

4

V
r


           (2) 

 
The surface area is 
 

24A r           (3) 
 
Equation (2) can be substituted into Eq. (3) to express area as a function of volume 
 

2/3
3

4
4

V
A 


   
 
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This result can then be substituted into the original differential equation, 
 

2/3
3

4
4

dV V
k

dt



    
 

         (4) 

 
The initial volume can be computed with Eq. (1), 
 

3 3
34 4 (2.5)

65.44985 mm
3 3

r
V

 
    

 
Euler’s method can be used to integrate Eq. (4). For the first step, the result is 
 

2/3
3(65.44985)

(0.25) (0) (0) 65.44985 0.08(4) 0.25
4

            65.44985 6.28319(0.25) 63.87905




       
 

  

dV
V V t

dt  

 
Here are the beginning and ending steps 
 

t V dV/dt
0 65.44985 -6.28319 

0.25 63.87905 -6.18225 
0.5 62.33349 -6.08212 
0.75 60.81296 -5.98281 

1 59.31726 -5.8843 
• 
• 
• 

  

9 23.35079 -3.16064 
9.25 22.56063 -3.08893 
9.5 21.7884 -3.01804 
9.75 21.03389 -2.94795 
10 20.2969 -2.87868 

 
A plot of the results is shown below. We have included the radius on this plot (dashed line and right scale): 

0

20

40

60

80

0 2 4 6 8 10

1.6

2

2.4V r

 
Eq. (2) can be used to compute the final radius as 
 

3
3(20.2969)

1.692182
4

r


   

 
Therefore, the average evaporation rate can be computed as 
 

min

mm
080782.0

min 10

mm )692182.15.2(



k  

 
which is approximately equal to the given evaporation rate of 0.08 mm/min. 
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1.14 The first two steps can be computed as 
 

 
 

(1) 70 0.019(70 20)  2 68 ( 0.95)2 68.1

(2) 68.1 0.019(68.1 20)  2 68.1 ( 0.9139)2 66.2722

T

T

       

       
 

 
The remaining results are displayed below along with a plot of the results. 
 

t T dT/dt t T dT/dt
0 70.00000 -0.95000 12.00000 59.62967 -0.75296 
2 68.10000 -0.91390 14.00000 58.12374 -0.72435 
4 66.27220 -0.87917 16.00000 56.67504 -0.69683 
6 64.51386 -0.84576 18.00000 55.28139 -0.67035 
8 62.82233 -0.81362 20.00000 53.94069 -0.64487 

10 61.19508 -0.78271    

50

60

70

80

0 5 10 15 20
 

1.15 The pair of differential equations to be solved are  
 

1di R
i q

dt L CL
    

dq
i

dt
  

 
or substituting the parameters 
 

40 2,000
di

i q
dt

    

dq
i

dt
  

 
The first step can be implemented by first using the differential equations to compute the slopes 
 

40(0) 2,000(1) 2,000
di

dt
      

0
dq

dt
  

 
Then, Euler’s method can be applied as 
 
(0.01) 0 2,000(0.01) 20i      

(0.01) 1 0(0.01) 1q     
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For the second step 
 

40( 20) 2,000(1) 1, 200
di

dt
       

20
dq

dt
   

(0.02) 20 1,200(0.01) 32i       

(0.02) 1 20(0.01) 0.8q     

 
The remaining steps are summarized in the following table and plot: 
 

t i q di/dt dq/dt 
0 0 1 -2000 0 

0.01 -20 1 -1200 -20 
0.02 -32 0.8 -320 -32 
0.03 -35.2 0.48 448 -35.2 
0.04 -30.72 0.128 972.8 -30.72 
0.05 -20.992 -0.1792 1198.08 -20.992 
0.06 -9.0112 -0.38912 1138.688 -9.0112 
0.07 2.37568 -0.47923 863.4368 2.37568 
0.08 11.01005 -0.45548 470.5485 11.01005 
0.09 15.71553 -0.34537 62.12813 15.71553 
0.1 16.33681 -0.18822 -277.034 16.33681 

 

-40

-20

0

20

40

0 0.02 0.04 0.06 0.08 0.1

-1

-0.5

0

0.5

1

i q
 

 
1.16  (a) The solution of the differential equation is 
 

0
tN N e  

 
The doubling time can be computed as the time when N = 2N0,  
 

(20)
0 02N N e  

 
ln 2 0.693

0.034657/hr
20 hrs 20 hrs

     

 
(b) The volume of an individual spherical cell is 
 

3

cell volume
6

d
         (1) 
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The total volume is 
 

3

 volume
6

d
N


         (2) 

 
The rate of change of N is defined as 
 
dN

N
dt

          (3) 

 
If N = N0 at t = 0, Eq. 3 can be integrated to give 
 

0 tN N e          (4) 

 
Therefore, substituting (4) into (2) gives an equation for volume 
 

3

0 volume
6

td
N e


         (5) 

 
(c) This equation can be solved for time 
 

3
0

6 volume
ln 

d N
t






         (6) 

 
The volume of a 500 m diameter tumor can be computed with Eq. 2 as 65,449,847. Substituting this value 
along with d = 20 m, N0 = 1 and  = 0.034657/hr gives 
 

3

6 65,449,847
ln 

20 (1)
278.63 hr 11.6 d

0.034657
t


 
 
         (6) 

 
1.17  Continuity at the nodes can be used to determine the flows as follows: 
 

3
1 2 3 0.6 0.4 1.0 m sQ Q Q      

3
10 1 1.0 m sQ Q   

3
9 10 2 1.0 0.6 0.4 m sQ Q Q      

3
4 9 8 0.4 0.3 0.1 m sQ Q Q      

3
5 3 4 0.4 0.1 0.3 m sQ Q Q      

3
6 5 7 0.3 0.2 0.1 m sQ Q Q      

 
Therefore, the final results are 
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1

0.10.10.6

0.30.4

1 0.4 0.3

0.2

 
 

1.18 (a) Substituting Eq. (1.10) into Eq. (P1.18) gives 
 

( / )(1 )  c m tdx gm
e

dt c
 

 
Separation of variables gives 
 

( / )

0 0
1   

x t
c m tgm

dx e dt
c

 

 
Integration yields 
 

2
( / )

2
(1 )   c m tgm gm

x t e
c c

 

 
(b) Euler’s method can be applied for the first step as 
 

12.5
(0) 9.81 0 9.81

68.1

(0) 0

    

 

dv c
g v

dt m
dx

v
dt

 

(2) (0) (0) 0 9.81(2) 19.62

(2) (0) (0) 0 0(2) 0

     

     

dv
v v t

dt
dx

x x t
dt

 

 
For the second step: 
 

12.5
(2) 9.81 19.62 6.2087

68.1

(0) 19.62

  



dv

dt
dx

dt

 

(4) 19.62 6.2087(2) 32.0374

(4) 0 19.62(2) 39.24

  
  

v

x
 

 
The remaining steps can be computed in a similar fashion as tabulated below along with the analytical 
solution:  
 

t vnum xnum dv/dt dx/dt vanal xanal 
0 0.0000 0.0000 9.8100 0.0000 0.0000 0.0000 
2 19.6200 0.0000 6.2087 19.6200 16.4217 17.4242 
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4 32.0374 39.2400 3.9294 32.0374 27.7976 62.3380 
6 39.8962 103.3147 2.4869 39.8962 35.6781 126.2949 
8 44.8700 183.1071 1.5739 44.8700 41.1372 203.4435 

10 48.0179 272.8472 0.9961 48.0179 44.9189 289.7305 

 
(c) 

0

10

20

30

40

50

0 2 4 6 8 10

0

100

200

300

400vnum

vanal
xnum

xanal

 
 
1.19 (a) For the constant temperature case, Newton’s law of cooling is written as 
 

0.12( 10)  
dT

T
dt

 

 
The first two steps of Euler’s methods are 
 

(0.5) (0) (0) 37 0.12(10 37)(0.5) 37 3.2400 0.50 35.3800

(1) 35.3800 0.12(10 35.3800)(0.5) 35.3800 3.0456 0.50 33.8572

dT
T T t

dt
T

         

      
 

 
The remaining calculations are summarized in the following table: 
 

t Ta T dT/dt
0:00 10 37.0000 -3.2400 
0:30 10 35.3800 -3.0456 
1:00 10 33.8572 -2.8629 
1:30 10 32.4258 -2.6911 
2:00 10 31.0802 -2.5296 
2:30 10 29.8154 -2.3778 
3:00 10 28.6265 -2.2352 
3:30 10 27.5089 -2.1011 
4:00 10 26.4584 -1.9750 
4:30 10 25.4709 -1.8565 
5:00 10 24.5426 -1.7451 

 
(b) For this case, the room temperature can be represented as 
 

20 2aT t   

 
where t = time (hrs). Newton’s law of cooling is written as 
 

0.12( 20 2 )
dT

T t
dt

     
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The first two steps of Euler’s methods are 
 

(0.5) 37 0.12(20 37)(0.5) 37 2.040 0.50 35.9800

(1) 35.9800 0.12(19 35.9800)(0.5) 35.9800 2.0376 0.50 34.9612

T

T

      
      

 

 
The remaining calculations are summarized in the following table: 
 

t Ta T dT/dt
0:00 20 37.0000 -2.0400 
0:30 19 35.9800 -2.0376 
1:00 18 34.9612 -2.0353 
1:30 17 33.9435 -2.0332 
2:00 16 32.9269 -2.0312 
2:30 15 31.9113 -2.0294 
3:00 14 30.8966 -2.0276 
3:30 13 29.8828 -2.0259 
4:00 12 28.8699 -2.0244 
4:30 11 27.8577 -2.0229 
5:00 10 26.8462 -2.0215 

 
Comparison with (a) indicates that the effect of the room air temperature has a significant effect on the 
expected temperature at the end of the 5-hr period (difference = 26.8462 – 24.5426 = 2.3036oC). 
 
(c) The solutions for (a) Constant Ta, and (b) Cooling Ta are plotted below: 

24

28

32

36

40

0:00 1:00 2:00 3:00 4:00 5:00

Constant Ta

Cooling Ta

 
 
1.20 (a) 

x
dx

v
dt

  y
dy

v
dt

   x
x

dv c
v

dt m
    y

y

dv c
g v

dt m
    

 
(b) The first step, 
 

(1) (0) 0 180(1) 180
dx

x x t
dt

       

(1) (0) 100 0(1) 100
dy

y y t
dt

         

12.5
(1) (0) 180 180(1) 147.8571

70
x

x x
dv

v v t
dt

       

12.5
(1) (0) 0 9.81 (0) (1) 9.81

70
y

y y

dv
v v t

dt
         
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The second step 
 

(2) 180 147.8571(1) 327.8571

(1) 100 9.81(1) 90.19

12.5
(1) 147.8571 147.8571(1) 121.4541

70
12.5

(1) 9.81 9.81 (9.81) (1) 17.8682
70

x

y

x

y

v

v

  
    

  

      

 

 
These along with the remaining results can be tabulated as 
 

t x y vx vy dx/dt dy/dt dvx/dt dvy/dt 
0 0.0000 -100.0000 180.0000 0.0000 180.0000 0.0000 -32.1429 9.8100 
1 180.0000 -100.0000 147.8571 9.8100 147.8571 9.8100 -26.4031 8.0582 
2 327.8571 -90.1900 121.4541 17.8682 121.4541 17.8682 -21.6882 6.6192 
3 449.3112 -72.3218 99.7659 24.4875 99.7659 24.4875 -17.8153 5.4372 
4 549.0771 -47.8343 81.9505 29.9247 81.9505 29.9247 -14.6340 4.4663 
5 631.0276 -17.9096 67.3165 34.3910 67.3165 34.3910 -12.0208 3.6687 
6 698.3441 16.4814 55.2957 38.0598 55.2957 38.0598 -9.8742 3.0136 
7 753.6398 54.5411 45.4215 41.0734 45.4215 41.0734 -8.1110 2.4755 
8 799.0613 95.6145 37.3105 43.5488 37.3105 43.5488 -6.6626 2.0334 
9 836.3718 139.1633 30.6479 45.5823 30.6479 45.5823 -5.4728 1.6703 

10 867.0197 184.7456 25.1751 47.2526 25.1751 47.2526 -4.4955 1.3720 

 
(c) The following plot indicates that the jumper will hit the ground in about t = 5.6 s at about x = 670 m. 

y versus x-150
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y versus t-150
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1.21 (a) The force balance can be written as 
 

1

2
  d

dv
m mg v v AC

dt
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Dividing by mass gives 
 

2


  dACdv

g v v
dt m

         (1) 

 
The mass of the sphere is sV where V = volume (m3). The area and volume of a sphere are d2/4 and 
d3/6, respectively. Substituting these relationships gives 
 

3

4




 



d

s

Cdv
g v v

dt d

dx
v

dt

 

 
(b) The first step for Euler’s method is 
 

3(1.3)0.47
9.81 ( 40) 40 10.0363

4(1.2)2700

40

    

 

dv

dt

dx

dt

 

 
40 10.0363(2) 19.9274

100 40(2) 20

    

  

v

dx

dt

 

 
The remaining steps are shown in the following table: 
 

t x v dx/dt dv/dt
0 100.0000 -40.0000 -40.0000 10.0363 
2 20.0000 -19.9274 -19.9274 9.8662 
4 -19.8548 -0.1951 -0.1951 9.8100 
6 -20.2450 19.4249 19.4249 9.7566 
8 18.6049 38.9382 38.9382 9.5956 

10 96.4813 58.1293 58.1293 9.3321 
12 212.7399 76.7935 76.7935 8.9759 
14 366.3269 94.7453 94.7453 8.5404 

 
(c) The results can be graphed as (notice that we have reversed the axis for the distance, x, so that the 
negative elevations are upwards.   
 

v

-40

0

40

80

120

0 5 10 15
v
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x-100
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100

200

300

400
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(d) Inspecting the differential equation for velocity (Eq. 1) indicates that the bulk drag coefficient is 
 

'
2


 dAC

c  

 
Therefore, for this case, because A = (1.2)2/4 = 1.131 m2, the bulk drag coefficient is 
 

1.3(1.131)0.47 kg
' 0.3455

2 m
 c  

 
1.22  (a) A force balance on a sphere can be written as: 
 

gravity buoyancy drag

dv
m F F F

dt
    

 
where 
 

gravityF mg  buoyancyF Vg  drag 3F dv  

 
Substituting the individual terms into the force balance yields 
 

3
dv

m mg Vg dv
dt

     

 
Divide by m 
 

3dv Vg dv
g

dt m m

 
    

 
Note that m = sV, so 
 

3

s s

dv g dv
g

dt V

 
 

    

 
The volume can be represented in terms of more fundamental quantities as V = d3/6. Substituting this 
relationship into the differential equation gives the final differential equation 
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2

18
1

s s

dv
g v

dt d

 
 

 
   

 
 

 
(b) At steady-state, the equation is 
 

2

18
0 1

s s

g v
d

 
 

 
   

 
 

 
which can be solved for the terminal velocity 
 

2

18
sg

v d
 



  

 
This equation is sometimes called Stokes Settling Law. 
 
(c) Before computing the result, it is important to convert all the parameters into consistent units. For the 
present problem, the necessary conversions are 
 

5
6

m
10 μm 10 m

10  μm
d     

6 3

3 3 3 3

g 10  cm g kg
1 1000

cm m 10  kg m
      

6 3

3 3 3 3

g 10  cm g kg
2.65 2650

cm m 10  kg ms      
g 100 cm kg kg

0.014 0.0014
cm s m 1000 g m s

      

 
The terminal velocity can then computed as 
 

5 2 59.81 2650 1000 m
(1 10 ) 10

1
6.423

8 0.00
21

14 s
v  



     

 
(d) The Reynolds number can be computed as 

 
5 56.42321000(10 ) 10

Re
0.0014

1
0.0004588

dv


 
    

 
This is far below 1, so the flow is very laminar. 
 
(e) Before implementing Euler’s method, the parameters can be substituted into the differential equation to 
give 
 

2

1000 18(0.0014)
9.81 1 6.108113 95,094

2650 2650(0.00001)

dv
v v

dt
      
 

 

 
The first two steps for Euler’s method are 
 

6 6 5(3.8147 10 ) 0 (6.108113 95,094(0)) 3.8147 10 2.33006 10v            
6 5 5 6 5(7.6294 10 ) 2.33006 10 (6.108113 95,094(2.33006 10 )) 3.8147 10 3.81488 10v                

 
The remaining steps can be computed in a similar fashion as tabulated and plotted below:  
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t v dv/dt t v dv/dt 
0 0 6.108113 2.2910–5 5.99E-05 0.409017 

3.8110–6 2.33E-05 3.892358 2.6710–5 6.15E-05 0.260643 
7.6310–6 3.81E-05 2.480381 3.0510–5 6.25E-05 0.166093 
1.1410–5 4.76E-05 1.580608 3.4310–5 6.31E-05 0.105842 
1.5310–5 5.36E-05 1.007233 3.8110–5 6.35E-05 0.067447 
1.9110–5 5.75E-05 0.641853    

 
1.23 (a) A force balance on a sphere can be written as: 
 

1

2 d
dv

m mg Vg v v AC
dt

     

 
(b) Dividing by mass gives 
 

2
dACdv Vg

g v v
dt m m


    

 
The mass of the sphere is sV where V = volume (m3). The area and volume of a sphere are d2/4 and 
d3/6, respectively. Substituting these relationships gives 
 

3
1

4
d

s s

Cdv
g v v

dt d


 

 
   

 
  

 
(c) At steady state, for a sphere falling downward 
 

23
0 1

4
d

s s

C
g v

d


 

 
   

 
  

 
which can be solved for 
 

4
1

3
s

d s

g d
v

C

 
 

 
  

 
  

 
Substituting the parameters gives 
 

4(9.81)2700(0.01) 1000 m
1 0.68783

3(1000)0.47 2700 s
v

    
 

  

 
(d) Before implementing Euler’s method, the parameters can be substituted into the differential equation to 
give 
 

2 21000 3(1000)0.47
9.81 1 6.176667 13.055556

2700 4(2700)(0.01)

dv
v v

dt
      
 

 

 
The first two steps for Euler’s method are 
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2

2

(0.03125) 0 (6.176667 13.055556(0) )0.03125 0.193021

(0.0625) 0.193021 (6.176667 13.055556(0.193021) )0.03125 0.370841

v

v

   

   
 

 
The remaining steps can be computed in a similar fashion as tabulated and plotted below:  
 

t v dv/dt t v dv/dt 
0 0.000000 6.176667 0.15625 0.643887 0.763953 

0.03125 0.193021 5.690255 0.1875 0.667761 0.355136 
0.0625 0.370841 4.381224 0.21875 0.678859 0.160023 

0.09375 0.507755 2.810753 0.25 0.683860 0.071055 
0.125 0.595591 1.545494    

 

0.0

0.2

0.4

0.6

0.8

0 0.0625 0.125 0.1875 0.25
 

 
1.24 Substituting the parameters into the differential equation gives 
 

 

 

3 2 2
11

5 3 2

10000
4 12(4) 12(4)

24(2 10 )0.000325

     2.5641 10 12 48

dy
x x x

dx

x x x

  


   
 

 
The first step of Euler’s method is 
 

 5 3 22.5641 10 (0) 12(0) 48(0) 0

(0.125) 0 0(0.125) 0

dy

dx
y

    

  
 

 
The second step is 
 

 5 3 2

5

2.5641 10 (0.125) 12(0.125) 48(0.125) 0.000149

(0.25) 0 0.000149(0.125) 1.86361 10

dy

dx

y





    

   
 

 
The remainder of the calculations along with the analytical solution are summarized in the following table 
and plot. Note that the results of the numerical and analytical solutions are close. 
 

x y-Euler dy/dx y-analytical x y-Euler dy/dx y-analytical 
0 0 0 0 2.1250.001832 0.001472 0.001925 

0.125 0 0.000149 9.42E-06 2.25 0.002016 0.001504 0.002111 
0.25 1.86E-05 0.000289 3.69E-05 2.3750.002204 0.001531 0.002301 

0.375 5.47E-05 0.00042 8.13E-05 2.5 0.002395 0.001554 0.002494 
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0.5 0.000107 0.000542 0.000141 2.625 0.00259 0.001574 0.00269 
0.625 0.000175 0.000655 0.000216 2.75 0.002787 0.001591 0.002887 
0.75 0.000257 0.000761 0.000305 2.8750.002985 0.001605 0.003087 

0.875 0.000352 0.000859 0.000406 3 0.003186 0.001615 0.003288 
1 0.000459 0.000949 0.000519 3.1250.003388 0.001624 0.003491 

1.125 0.000578 0.001032 0.000643 3.25 0.003591 0.00163 0.003694 
1.25 0.000707 0.001108 0.000777 3.3750.003795 0.001635 0.003898 

1.375 0.000845 0.001177 0.00092 3.5 0.003999 0.001638 0.004103 
1.5 0.000992 0.00124 0.001071 3.6250.004204 0.00164 0.004308 

1.625 0.001147 0.001298 0.00123 3.75 0.004409 0.001641 0.004513 
1.75 0.00131 0.001349 0.001395 3.8750.004614 0.001641 0.004718 

1.875 0.001478 0.001395 0.001567 4 0.004819 0.001641 0.004923 
2 0.001653 0.001436 0.001744     

0

0.001

0.002

0.003

0.004

0.005

0.006

0 1 2 3 4

y-Euler

y-analytical

  
 
1.25 [Note that students can easily get the underlying equations for this problem off the web]. The volume of a sphere 
can be calculated as 
 

34

3sV r  

 
The portion of the sphere above water (the “cap”) can be computed as 
 

 
2

3
3a
h

V r h


   

 
Therefore, the volume below water is 
 

 
2

34
3

3 3s
h

V r r h
    

 
Thus, the steady-state force balance can be written as 
 

 
2

3 34 4
3 0

3 3 3s f
h

g r g r r h
   

 
    

 
 

 
Cancelling common terms gives 
 

 
2

3 34 4
3 0

3 3 3s f
h

r r r h 
 

    
 

 

 
Collecting terms yields 
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 3 2 34
0

3 3
f

f s fh r h r


       

 
1.26 [Note that students can easily get the underlying equations for this problem off the web]. The total volume of a 
right circular cone can be calculated as 
 

2
2

1

3tV r H  

 
The volume of the frustum below the earth’s surface can be computed as 
 

   1 2 2
1 2 1 23b

H h
V r r r r

 
    

 
Archimedes’ principle says that, at steady state, the downward force of the whole cone must be balanced by the upward 
buoyancy force of the below ground frustum, 
 

   12 2 2
2 1 2 1 2

1

3 3g b

H h
r Hg r r r r g


  


         (1) 

 
Before proceeding we have too many unknowns: r1 and h1. So before solving, we must eliminate r1 by recognizing that 
using similar triangles (r1/h1 = r2/H) 
 

2
1 1

r
r h

H
  

 
which can be substituted into Eq. (1) (and cancelling the g’s) 
 

  2 2
12 22 2

2 1 2 1
1

3 3g b

H h r r
r H h r h

H H


  

          
 

 
Therefore, the equation now has only 1 unknown: h1, and the steady-state force balance can be written as 
 

 
2

3 34 4
3 0

3 3 3s f
h

g r g r r h
   

 
    

 
 

 
Cancelling common terms gives 
 

 
2

3 34 4
3 0

3 3 3s f
h

r r r h 
 

    
 

 

 
and collecting terms yields 
 

 3 2 34
0

3 3
f

f s fh r h r


       

 


