CHAPTER 1

4
11 (@ p=-L-12210 e em

RT (287)(203)

(b) T=-2 1058 501 °R

PR (123 x 10°)(1716)

TE .
1.2 N = - J-LE (pu cos O + 1, sin 0) ds,

TE .
+ I (p,cosf—r7,sind) ds, (1.7
LE .
ds cos 8 =dx
ds sin 6 = -dy
Hence,

. TE TE 4 d +
N=- [ @u-podst [ (tT,)dy |

, TE E
N/ = - _[LE [(pu'poo)'“(pf -pw)] dx + -‘.LE (Tu'*"t()dy

Divide by ge S = geo (1)
lz__l. jTE (pu'pw)_(Pe“pm) dx+l ITE (};‘L+~Q)dy
q.¢ c JLE q. q. c Y \q, Cq.

Cn= —l—jc (cp’ —cpu) dx+l Izz (cfu +cf£) dy

c-e C

This is Eq. (1.15).
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TE .
A= ILE (-pu sind + T, c0s0) ds,
TE .
+ ILE (p, sin® + 1, cosB) ds, (1.8)
. TE TE
A= eyt [ T, dx

A= .[ZE [(Pu - Peo) = (P = Pe)] dy + I: (tyt+T,)dx

A 1t - _ .
____:_—J' E [pu pco] _(pé poo) dy+"l_J (i+inX
q,c C°LE d, 4. c’°\q, 4,

1 TE 1 <
Ca= — j (cp“—cp()dy-kz IO (cfu—cfe)dx

C LE

This is Eq. (1.16).
TE
M= | .. [(Pycosd + 1, sin®)x — (p, sind - 7, cosb)y] ds,
TE
+ JLE [-p, cosO + 1, sin®)x + (p, sin® + 1,cosB)y] ds,
. TE TE
M'ig = j.uz [pu-p,Ixdx- ILE (tw+1,)xdy
+ TE d " TE + d
[ u-pdydy+ [ = (+7,)ydx
, TE TE
Mie= |7 [(u-p) (o -po)lxdx- [ () xdy

TE TE
+ ILE [Pu-p) =0, -Pa)] ydy+ [ (r+7,)ydx

Divide by quc’:
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1 TE pu ——poo pk .—poo 1 TE Tu T(
+CZILE [( d. J_( e yderEz—jLE 0. . v

1 c TE
e =7 [jo (C,, —C, )xdx- jLE (C, +C,) xdy

TE c
+ jLE (C, -C,)ydy+ j (C;, +C;) y dx]

This i1s Eq. (1.17).

1.3

Mie=- [* (0, p) (@) (D) x-0,-po) [ xdx

2

o c
MLE“'(PFPU)E—

N'= " @,-p)dx=@,-pJe
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1.3 For a flat plate, 6 = 0 in Egs. (1.7) — (1.11). Hence,

N'= [ p-pddx= [ F2x10° 6ol + 119 x 10 dx

XS

N'=-2x104[—3~-x2+x]g +1.19x 10%]! = [1.L12x 10
A= @-wde= [ (731x 724288 2 dx

A =[1274 x%! =[1274 N
L' =N’ cosa - A’ sino. = 1.12 x 10° cos 10° — 1274 sin 10°
=[1.105 x 10°N]

D' =N’ sino + A’ cosot = 1.12 x 10° sin 10° + 1274 cosa

=2.07x 10'N

Mie= " [pu-p,lxdx= j’ [2x 10 (x-1)2 — 1.19 x 10%] x dx

+2x 104[~4———§-+52i]}, [0.595 x 105! =

-5.78 x 10" Nm

M'gs = Mg + L' (c/4)=-5.78 x 10* + 1.105 x 10° (0.25)

=13.02 x 10° N/m|

M (=578 x 10%)

112 x 10°
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1.5
C = Cp COSOL - C4 SINOL

=(1.2) cos 12°~(0.3) sina. = |1.18
Cq = Cp SINQL + C, COSQL

= (1.2) sin 12° + (0.3) cosa. = {0.279,

1.6 Ch = C, COSCQL + Cq SINQL

Also, using the more accurate N’ rather than L' in Eq. (1.22), we have

Hence:
a(®) Ca Xep/C
-2.0 0.0498 1.09
0 0.25 0.41
2.0 0.44 0.336
4.0 0.639 0.306
6.0 0.846 0.293
8.0 1.07 0.284
10.0 1.243 0.277
12.0 1.402 0.271
14.0 1.52 0.266
5
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Note that x¢, moves forward as o is increased, and that it closely approaches the quarter-
chord point in the range of o of 10° to 14°. At higher angles-of-attack, beyond the stall (o >
16°), x¢p Will reverse its movement and move rearward as o continues to increase. Compare

the above variation with the center-of-pressure measurements of the Wright Brothers on one
of their airfoils, shown in Fig. 1.28.

1.7 K =3 (mass, length, and time)
fi (D, pw, Vw, €, 2)=0  Hence N =35
We can write this expression in terms of N — K = 5 — 3 = 2 dimensionless Pi products:
f> (I, Th)
where
IT) = 5 (Pw; Veo» €, D)
[ =14 (Pecy Vo, €, 8)

Let II; = po® Vo' c'D
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l=@m £t £°(m £ 3 =0

mass: a+1=0 a=-1
length: -3a+b+c+1=0 b=-2
time: -b-2=0 c=-2
Hence:

I = D, 7 orIh= &

PV, ¢ LoV

2
D

l’I1 = )

q.C

Let IL= poo2 Voo c? gd

1=(m ¢ th 2% (2 tH=0

mass: a=1{_ a=0

length: -3a+1+b+d=0 d=-1/2

time: -1-2d=0 =-1/2
Hence:

HZS Vw

Thus:

D V
6 (I ITh)=1f, ( = J =0

q.c> 4feg

or.

1.8 Dw = f] (pw, VOO; C, Ao, Cp’ CV)

K =4 (mass, length, time, degrees)
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£5 (Dw, Peos Vo €, ooy Cps Cv) = 0
Hence, N = 7. This can be written as a function of N — K =7 — 4 = 3 pi products:
f3= (T, I, I13) =0
where:
Ty = £4 (P, Voo, €, Cp, D)
I = 15 (P, Voo, €, €p, 8co)
I3 = £ (Peo, Veos €, Cp, Cv)

The dimensions of ¢, and ¢, are

energy _ (force)(distance)  (mft™)(¢)
mass(®) B mass(°) N m(°)

fep] =

[ep] = 2217 (°)" where (°) degrees.

For H]Z

P Vi K" D =TT,

(m 22 (LY (O (P O (m £ =1

mass: 1+1=0 i=-1
length: -3i+j+k+2n+1=0 n=0
time: -j—2n-2=0 j=-2
degrees: -n=0 k=-2
Hence:
L= Pw\zzcz ,orll= ch
For I5:
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L=(m £7) (£ h (LY (2o OF ety

mass: 1=0 : 1i=0
length: -3i+1+j+2k+n=0 k=0
time: -1-2k-n=0 n=-1
degrees: -k =0 j=0
Hence:
= Yo
4,
ForIls:
I = po Vi ¢ cy
L= (m £7) (LY 5 O (£ ) ()
mass: 1=0 1=0
length: -3i+j+k+2n+2=0 n=-1
time: -j—2n-2=0 j=0
degrees: -n—1=0 | k=0
Hence:
Iz = %’- We can take the reciprocal, and still have a dimensionless product.
Hence, '
Iz = EL =y
p
Thus,
lawa=d
or,
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o Mi_Via V[T, 100 [800 _,
' M, V,a V,\T, 200V200

Hence, the Mach numbers of the two flows are the same.

Re, p,Vc, (&J_ o Ve, _5__( 1.23)(100)(1) 800 _ 354
Re, pVye,\p,) p Ve, VT, \1739/\200/\2/V200

The Reynold’s numbers are different. Hence, the two flows are not dynamically similar.

1.10 Denote free flight by subscript 1, and the wind tunnel by subscript 2. For the lift and
drag coefficients to be the same in both cases, the flows must be dynamically similar. Hence

M, =M,
and
Re; = Rey
For Mach number:
Vi Vs
a, a,

Since a o +/ T, we have

vV, V, 250

e =167 (1)
JL YT 4223
A% V,c
For Reynolds number: M
Ky Hy

Assume, as before, that p o JT . Hence

o V5¢,  pVie

JL T
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or,

AN [c) _ (0414)(250) (éj
223 1
o1,

P, VY,

=34.65 2
T ?
Finally, from the equation of state:
p, 101 x 10°
Ty=—~2=—"—+——=3519 3
pTo= 2 537 3)

Egs. (1) — (3) represent three equations for the three unknowns, ps, V,, and T,. They are
summarized below:

\/\% =167 (1

AR = 34.65 2)

T

p2T,=351.9 3)
From Eq. (3):

p2=351.9/T, “)

Subst. (4) into (2):

- 3519( V
3519( 2 J=34.65 (5)
T, \JT,
Subst. (1) into (5): 202 (16.7) = 34.65

2

Hence,
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(351.9)(16.7) ;
T, = 222000 - 169 6°K]
2 T (34.65)

From Eq. (1): V2=16.7 /T, =167 1696 =|217.5 —
secC

3519 3519
T, 1696

kg

From Eq. (3): p2= —
m

2.07

111 pp=pa-pgAh

=1.01x 10° - (1.36 x 10*)(9.8)(0.2)

Py =17.43 x 10" N/m’]

]

1.12 Weight = Buoyancy force + lift
W = B + L

B=(15000) (L1117)  (98) 1.634 x 10°N
L—-v-—/ k—-y-)

volume  air density acceleration
(m*) at 1000m  of gravity
(kg/m®) (m/sec)

i

1
qoo == poo Vco2

: % (1.1117) (30)* = 500 N/m’

i

S =nd*/4 = n(14)"/4 =153.9 m’
L = go S CL = (500)(153.9)(0.05) = 3487 N

Hence:

W=1.634x10°+3847= [1.67x 10°N

1.13  Let us use the formalism surrounding Eq. (1.16) in the text. In this case, ¢4 = ¢, and
from Eq. (1.16), neglecting skin friction
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Cq = — . (Cpu —Cp[)dy (1)

From Eq. (1.13) in the text, Eq. (1) above can be written as

1 e .
=~ [ (G ~GC,) (-sinBds) ®)
Draw a picture:

Following our sign
convention, note
that 0 is drawn
counterclockwise

in this sketch, hence
it is a negative
angle, -0.

From the geometry:
- B0=7n-¢
Hence, sin (-6) = - sin 6 = sin (1-0) = cos ¢

Substitute this into Eq. (2), noting also that ds = rd¢ and the chord ¢ is twice the radius, ¢ =
2r. From Eq. (2),

Cd=—-1— ITE (Cp.,"cp,_) cosord¢

2 JLE
_ 1 TE
C"_E jLE (Cp“—Cpt) cosddo
1 TE 1 p1E
cd—z J'LE C, cosodo " ILE C, cos¢dé 3)

Consider the limits of integration for the above integrals. The first integral is evaluated from
the leading edge to the trailing edge along the upper surface. Hence, ¢ = 0 at LE and 7 at TE.

13
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The second integral is evaluated from the leading edge to the trailing edge along the bottom
surface. Hence, ¢ =2 at LE and 7 at the TE. Thus, Eq. (3) becomes

1 i 1 V.3
ca= [ ¢, cosod 5 [, ¢, cospdg 4
In Eq. (4),
C,. =2 cos” ¢ for0< ¢ <n/2
C,, =0 forgsd)Sn
Cc = 2 Iz <h<
b, =2c0s" ¢ for—é—_¢_27c
3z
C, =0 forns¢s~2—~

Thus, Eq. (4) becomes
C4= jm cos’ ¢ d ¢ - jjm cos® ¢d ¢
Since cos’® o6do= (% sing)(cos” ¢ + 2), Eq. (5) becomes
J
ca=[(5 sing)(cos” ¢ + 217 - [(5 sind)(eos’d +2]'T)

- Do - dye
= (@)= (DD

1.14

14
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Bopy
SUBNERGED

FLUID

'
- - — 1 & . ) -
Consider the arbitrary body sketched above. Consider also the vertical cylinder element
inside the body which intercepts the surface area dA; near the top of the body, and dA; near
the bottom of the body. The pressures on dA; and dA; are p; and p; respectively, and makes
angles 0 and 0, respectively with respect to the vertical line through the middle of dA; and
dA,. The net pressure force in the y-direction on this cylinder is:

dFy =-p; cos 8; dA| +p; cos 0, dA;, (D
Let dA, be the projection of dA; and dA; on a plane perpendicular to the y axis.

dAy = cos 0 dA; = cos 6, dA;
Thus, Eq. (1) becomes

dFy = (p2 ~ p1) dAy @)

From the hydrostatic equation

h,

p-p= [ pgdy (3)

I

Combining Egs. (2) and (3),

h,
dFy = jh; p gdy dA, 4)

However, dy dAy = dV = element of volume of the body. Thus, the total force in the y
direction, Fy, is given by Eq. (4) integrated over the volume of the body

15
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Fy = dv
SN L5

Force onbody = Weight of fluid displaced by body.

1.15  From Eq. (1.45)

o - L 2W 2(2950)
L= = =
.S p. V.S (0002377)V_*(174)
14265
CL= 1
L= (1

o0

Also,
Cp = 0.025 + 0.054 C; )

Tabulate Eqs. (1) and (2) versus velocity.

' L C,
Vo, (ft/sec) CL - Cp b-C,
70 2911 0.483 6.03
90 1.761 0.192 9.17
110 1.179 0.100 11.79
130 0.844 0.063 13.40
150 0.634 0.047 13.49
170 0.494 0.038 13.0
190 0.395 0.033 11.97
210 0.323 0.031 10.42
230 0.270 0.029 9.31
250 0.228 0.028 8.14

These results are plotted on the next page.
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.
'/'6“1-_ Cp
D

/41144 1+ 06./4
L2121 + 0. /2
1o} o} o
ag 8¢ 10,08
0,41 &1 loo0
OAt 41 +o0.04
o4 2¢ looz.
O N T T T T e e sre mie sie me ©

LFLICHT VvELOCITY, Y ( FTr/sec)

Examining this graph, we note, for steady, level flight:

o

The lift coefficient decreases as V, increases.

2. At lower velocity range, the drag coefficient decreases even faster than the lift
coefficient with velocity. (Note that on the graph the scale for Cp is one-tenth
that for Ci.)

3. As a result, the lift-to-drag ratio first increases, goes through a maximum, and

then gradually decreases as velocity increases.

It can be shown that the maximum velocity for this airplane is about 265 ft/sec at sea level.
As seen in the graph, the maximum value of L/D occurs around V. = 140 ft/sec, which is
much lower than the maximum velocity. However, at higher velocity the value of L/D
decreases only gradually as V,, increases. This has the practical implication that at higher
speeds, even though the value of L/D is less than its maximum, it is still a reasonably high
value. The range of the aircraft is proportional to L/D (see for example, Anderson, Aircraft
Performance and Design, McGraw-Hill, 1999, or Anderson, Introduction to Flight, 4 ed.,

17
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McGraw-Hill, 2000). To obtain maximum range, the airplane should fly at the velocity for
maximum L/D, which for this case is 140 ft/sec. However, one reason to fly in an airplane is
to get from one place to another in a reasonably short time. By flying at the low velocity of
V. = 140 ft/sec, the flight time may be unacceptably long. By cruising at a higher speed, say
200 ft/sec, the flight time will be cut by 30%, with only an 18% decrease in L/D.

18
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1.16 From Eqg. (1.59), in the text,
w=a (3)

or,

As given in Section 1.11, u at standard sea level temperature is
p=1.7894 x 107 kg/(m)(s)

Thus,

, 282
(_) —w_ 28 _ [1576x107 sec*
I 1.7854 x 107%

1.17 From Eg. (1.60)

(ﬂ) _ _ 4w
dy v=0 k

The heat transfer into the surface is -0.03 MW/m?, and from Section 1.11, the

thermal conductivity at standard sea level temperature is

19
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k = 2.53 x 1072 J/(m)(s)(K)

g,. = -0.03 MW/m? = -0.03 x 10° W/m?

dT 0.03x 10° s K
= —————— =|1.186 x 10° =
2.53x1072 m

1.18 (a) At standard sea level, from Appendix E, p.. = 0.002377 slug/(ft®). Also,
from Section 1.11, p.. = 3.7373 x 107 slug/(ft)(s). Putting the velocity in

consistent units,
as
V.. = (200) P 293.3 ft/sec

Thus,

_pxVwee  (0.002377)(293.3)(14.25)
T 3.7373x 1077

Re

|Re = 2.66 x 10|

_ PwuVwc  (0.002377)(1340)(21.5)
[ea 3.7373x 1077

(b) Re

|Re = 1.83 x 10°|
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1.19 From Figure 1.65, we have the normal and tangential force coefficients at
3-degres angle of attack given as 0.546 and O respectively. From Egs. (1.1) and

(1.2), written in terms of force coefficients, and using Lilienthal’s nomenclature:
CL=ncosa-0sina
Cob=nsina+6cosa

The ratio of lift-to-drag is

L € ncosa—Bsina

D Cp o 1 sina+ & cosa

L 0.546cos -0
—= ——— =cot3°= |19.08
D 0.546 5in 34 0 [19.08]

At a = 2° from the Lilienthal Table, n = 0.489 and 6 = 0.008

L 0.489 cos2°— 0.008=in 2° 0.4887-2.79x 10 %

0.489sin 2"+ 0.008cos 2" 0.0171+8x 1073
L 0.428
— = = 19.44
D 0.0251

Ata=1°n=0.434and 6 =0.016

L  0.434cos1°- 0.016sin 1°
D.434sin1°+ 0.016cos1’

0.4339 -2.792 x 10 % 0.4336
= — - — = — = 18.56
7.574x 1073+ 0.01599 0.023336

= I
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Ata=4° n=0.6and 6 =0.007

L  0.6cos4°+0.007sin4”  0.5985+4.883x107%
0.6sin4°+ 0.007cos4”  0.04185 — 6.9829x 1073

L 059899

—= ———=17.18

D  0.03487

So we have the following tabulation:

a-degrees L/D
1° 18.56
2° 19.44
3° 19.08
4° 17.18

The Wright brothers chose a three-degree angle of attack for their design point
because, from the Lilienthal Table, it corresponded very nearly to the maximum,

L/D.
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