
1C H A P T E R

Introduction

Practice Exercises

1.1 What are the three main purposes of an operating system?
Answer:
The three main puropses are:

• To provide an environment for a computer user to execute programs
on computer hardware in a convenient and efficient manner.

• To allocate the separate resources of the computer as needed to
solve the problem given. The allocation process should be as fair
and efficient as possible.

• As a control program it serves two major functions: (1) supervision
of the execution of user programs to prevent errors and improper use
of the computer, and (2) management of the operation and control
of I/O devices.

1.2 We have stressed the need for an operating system to make efficient use
of the computing hardware. When is it appropriate for the operating
system to forsake this principle and to “waste” resources? Why is such
a system not really wasteful?
Answer:
Single-user systems should maximize use of the system for the user. A
GUI might “waste” CPU cycles, but it optimizes the user’s interaction
with the system.

1.3 What is the main difficulty that a programmer must overcome in writing
an operating system for a real-time environment?
Answer:
The main difficulty is keeping the operating system within the fixed time
constraints of a real-time system. If the system does not complete a task
in a certain time frame, it may cause a breakdown of the entire system it
is running. Therefore when writing an operating system for a real-time
system, the writer must be sure that his scheduling schemes don’t allow
response time to exceed the time constraint.

1



2 Chapter 1 Introduction

1.4 Keeping in mind the various definitions of operating system, consider
whether the operating system should include applications such as Web
browsers and mail programs. Argue both that it should and that it should
not, and support your answers.
Answer:
An argument in favor of including popular applications with the
operating system is that if the application is embedded within the
operating system, it is likely to be better able to take advantage of
features in the kernel and therefore have performance advantages
over an application that runs outside of the kernel. Arguments against
embedding applications within the operating system typically dominate
however: (1) the applications are applications - and not part of an
operating system, (2) any performance benefits of running within the
kernel are offset by security vulnerabilities, (3) it leads to a bloated
operating system.

1.5 How does the distinction between kernel mode and user mode function
as a rudimentary form of protection (security) system?
Answer:
The distinction between kernel mode and user mode provides a rudi-
mentary form of protection in the following manner. Certain instructions
could be executed only when the CPU is in kernel mode. Similarly, hard-
ware devices could be accessed only when the program is executing in
kernel mode. Control over when interrupts could be enabled or disabled
is also possible only when the CPU is in kernel mode. Consequently, the
CPU has very limited capability when executing in user mode, thereby
enforcing protection of critical resources.

1.6 Which of the following instructions should be privileged?

a. Set value of timer.

b. Read the clock.

c. Clear memory.

d. Issue a trap instruction.

e. Turn off interrupts.

f. Modify entries in device-status table.

g. Switch from user to kernel mode.

h. Access I/O device.

Answer:
The following operations need to be privileged: Set value of timer, clear
memory, turn off interrupts, modify entries in device-status table, access
I/O device. The rest can be performed in user mode.

1.7 Some early computers protected the operating system by placing it in
a memory partition that could not be modified by either the user job
or the operating system itself. Describe two difficulties that you think
could arise with such a scheme.
Answer:



Practice Exercises 3

The data required by the operating system (passwords, access controls,
accounting information, and so on) would have to be stored in or passed
through unprotected memory and thus be accessible to unauthorized
users.

1.8 Some CPUs provide for more than two modes of operation. What are
two possible uses of these multiple modes?
Answer:
Although most systems only distinguish between user and kernel
modes, some CPUs have supported multiple modes. Multiple modes
could be used to provide a finer-grained security policy. For example,
rather than distinguishing between just user and kernel mode, you
could distinguish between different types of user mode. Perhaps users
belonging to the same group could execute each other’s code. The
machine would go into a specified mode when one of these users was
running code. When the machine was in this mode, a member of the
group could run code belonging to anyone else in the group.

Another possibility would be to provide different distinctions within
kernel code. For example, a specific mode could allow USB device drivers
to run. This would mean that USB devices could be serviced without
having to switch to kernel mode, thereby essentially allowing USB device
drivers to run in a quasi-user/kernel mode.

1.9 Timers could be used to compute the current time. Provide a short
description of how this could be accomplished.
Answer:
A program could use the following approach to compute the current
time using timer interrupts. The program could set a timer for some
time in the future and go to sleep. When it is awakened by the interrupt,
it could update its local state, which it is using to keep track of the
number of interrupts it has received thus far. It could then repeat this
process of continually setting timer interrupts and updating its local
state when the interrupts are actually raised.

1.10 Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?
Answer:
Caches are useful when two or more components need to exchange
data, and the components perform transfers at differing speeds. Caches
solve the transfer problem by providing a buffer of intermediate speed
between the components. If the fast device finds the data it needs in the
cache, it need not wait for the slower device. The data in the cache must
be kept consistent with the data in the components. If a component has
a data value change, and the datum is also in the cache, the cache must
also be updated. This is especially a problem on multiprocessor systems
where more than one process may be accessing a datum. A component
may be eliminated by an equal-sized cache, but only if: (a) the cache
and the component have equivalent state-saving capacity (that is, if the
component retains its data when electricity is removed, the cache must



4 Chapter 1 Introduction

retain data as well), and (b) the cache is affordable, because faster storage
tends to be more expensive.

1.11 Distinguish between the client–server and peer-to-peer models of
distributed systems.
Answer:
The client-server model firmly distinguishes the roles of the client and
server. Under this model, the client requests services that are provided
by the server. The peer-to-peer model doesn’t have such strict roles. In
fact, all nodes in the system are considered peers and thus may act as
either clients or servers—or both. A node may request a service from
another peer, or the node may in fact provide such a service to other
peers in the system.

For example, let’s consider a system of nodes that share cooking
recipes. Under the client-server model, all recipes are stored with the
server. If a client wishes to access a recipe, it must request the recipe from
the specified server. Using the peer-to-peer model, a peer node could ask
other peer nodes for the specified recipe. The node (or perhaps nodes)
with the requested recipe could provide it to the requesting node. Notice
how each peer may act as both a client (it may request recipes) and as a
server (it may provide recipes).


