## **Chapter 1**

## **Problems**

1. (a) By the generalized basic principle of counting there are

$$26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 67,600,000$$

(b) 
$$26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 = 19,656,000$$

- 2.  $6^4 = 1296$
- 3. An assignment is a sequence  $i_1, ..., i_{20}$  where  $i_j$  is the job to which person j is assigned. Since only one person can be assigned to a job, it follows that the sequence is a permutation of the numbers 1, ..., 20 and so there are 20! different possible assignments.
- 4. There are 4! possible arrangements. By assigning instruments to Jay, Jack, John and Jim, in that order, we see by the generalized basic principle that there are  $2 \cdot 1 \cdot 2 \cdot 1 = 4$  possibilities.
- 5. There were  $8 \cdot 2 \cdot 9 = 144$  possible codes. There were  $1 \cdot 2 \cdot 9 = 18$  that started with a 4.
- 6. Each kitten can be identified by a code number i, j, k, l where each of i, j, k, l is any of the numbers from 1 to 7. The number *i* represents which wife is carrying the kitten, *j* then represents which of that wife's 7 sacks contain the kitten; *k* represents which of the 7 cats in sack *j* of wife *i* is the mother of the kitten; and *l* represents the number of the kitten of cat *k* in sack *j* of wife *i*. By the generalized principle there are thus  $7 \cdot 7 \cdot 7 \cdot 7 = 2401$  kittens
- 7. (a) 6! = 720
  - (b)  $2 \cdot 3! \cdot 3! = 72$
  - (c) 4!3! = 144
  - (d)  $6 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1 = 72$
- 8. (a) 5! = 120

(b) 
$$\frac{7!}{2!2!} = 1260$$

(c) 
$$\frac{11!}{4!4!2!} = 34,650$$

(d) 
$$\frac{7!}{2!2!} = 1260$$

9. 
$$\frac{(12)!}{6!4!} = 27,720$$

- 10. (a) 8! = 40,320
  - (b)  $2 \cdot 7! = 10,080$
  - (c) 5!4! = 2,880
  - (d)  $4!2^4 = 384$

2 Chapter 1

- 11. (a) 6!
  - (b) 3!2!3!
  - (c) 3!4!
- 12. (a)  $30^5$ 
  - (b) 30 · 29 · 28 · 27 · 26
- 13.  $\binom{20}{2}$
- 15. There are  $\binom{10}{5}\binom{12}{5}$  possible choices of the 5 men and 5 women. They can then be paired up in 5! ways, since if we arbitrarily order the men then the first man can be paired with any of the 5 women, the next with any of the remaining 4, and so on. Hence, there are  $5!\binom{10}{5}\binom{12}{5}$  possible results.
- 16. (a)  $\binom{6}{2} + \binom{7}{2} + \binom{4}{2} = 42$  possibilities.
  - (b) There are  $6 \cdot 7$  choices of a math and a science book,  $6 \cdot 4$  choices of a math and an economics book, and  $7 \cdot 4$  choices of a science and an economics book. Hence, there are 94 possible choices.
- 17. The first gift can go to any of the 10 children, the second to any of the remaining 9 children, and so on. Hence, there are  $10 \cdot 9 \cdot 8 \cdot \cdot \cdot 5 \cdot 4 = 604,800$  possibilities.
- 18.  $\binom{5}{2} \binom{6}{2} \binom{4}{3} = 600$
- 19. (a) There are  $\binom{8}{3}\binom{4}{3} + \binom{8}{3}\binom{2}{1}\binom{4}{2} = 896$  possible committees.

  There are  $\binom{8}{3}\binom{4}{3}$  that do not contain either of the 2 men, and there are  $\binom{8}{3}\binom{2}{1}\binom{4}{2}$  that contain exactly 1 of them.
  - (b) There are  $\binom{6}{3}\binom{6}{3} + \binom{2}{1}\binom{6}{2}\binom{6}{3} = 1000$  possible committees.

Chapter 1 3

(c) There are 
$$\binom{7}{3}\binom{5}{3}+\binom{7}{2}\binom{5}{3}+\binom{7}{3}\binom{5}{2}=910$$
 possible committees. There are  $\binom{7}{3}\binom{5}{3}$  in which neither feuding party serves;  $\binom{7}{2}\binom{5}{3}$  in which the feuding women serves; and  $\binom{7}{3}\binom{5}{2}$  in which the feuding man serves.

20. 
$$\binom{6}{5} + \binom{2}{1} \binom{6}{4}, \binom{6}{5} + \binom{6}{3}$$

- 21.  $\frac{7!}{3!4!}$  = 35. Each path is a linear arrangement of 4 *r*'s and 3 *u*'s (*r* for right and *u* for up). For instance the arrangement *r*, *r*, *u*, *u*, *r*, *r*, *u* specifies the path whose first 2 steps are to the right, next 2 steps are up, next 2 are to the right, and final step is up.
- There are  $\frac{4!}{2!2!}$  paths from A to the circled point; and  $\frac{3!}{2!1!}$  paths from the circled point to B. Thus, by the basic principle, there are 18 different paths from A to B that go through the circled point.

23. 
$$3!2^3$$

25. 
$$\binom{52}{13, 13, 13, 13}$$

- 28. Assuming teachers are distinct.
  - (a) 4

(b) 
$$\binom{8}{2,2,2,2} = \frac{8!}{(2)^4} = 2520.$$

29. (a) (10)!/3!4!2!

(b) 
$$3\binom{3}{2} \frac{7!}{4!2!}$$

30.  $2 \cdot 9! - 2^2 8!$  since  $2 \cdot 9!$  is the number in which the French and English are next to each other and  $2^2 8!$  the number in which the French and English are next to each other and the U.S. and Russian are next to each other.

4

31. (a) number of nonnegative integer solutions of  $x_1 + x_2 + x_3 + x_4 = 8$ . Hence, answer is  $\binom{11}{3} = 165$ 

(b) here it is the number of positive solutions—hence answer is 
$$\binom{7}{3} = 35$$

- 32. (a) number of nonnegative solutions of  $x_1 + ... + x_6 = 8$  answer =  $\begin{pmatrix} 13 \\ 5 \end{pmatrix}$ 
  - (b) (number of solutions of  $x_1 + ... + x_6 = 5$ ) × (number of solutions of  $x_1 + ... + x_6 = 3$ ) =  $\begin{pmatrix} 10 & 8 \\ 5 & 5 \end{pmatrix}$
- 33. (a)  $x_1 + x_2 + x_3 + x_4 = 20, x_1 \ge 2, x_2 \ge 2, x_3 \ge 3, x_4 \ge 4$ Let  $y_1 = x_1 - 1, y_2 = x_2 - 1, y_3 = x_3 - 2, y_4 = x_4 - 3$  $y_1 + y_2 + y_3 + y_4 = 13, y_i > 0$

Hence, there are  $\binom{12}{3}$  = 220 possible strategies.

(b) there are  $\binom{15}{2}$  investments only in 1, 2, 3

there are  $\binom{14}{2}$  investments only in 1, 2, 4

there are  $\binom{13}{2}$  investments only in 1, 3, 4

there are  $\binom{13}{2}$  investments only in 2, 3, 4

$$\begin{pmatrix} 15 \\ 2 \end{pmatrix} + \begin{pmatrix} 14 \\ 2 \end{pmatrix} + 2 \begin{pmatrix} 13 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ 3 \end{pmatrix} = 552 \text{ possibilities}$$

- 34. (a)  $\binom{14}{4} = 1001$ 
  - (b)  $\binom{10}{3} = 120$
  - (c) There are  $\binom{13}{3}$  = 286 possible outcomes having 0 trout caught and  $\binom{12}{3}$  = 220 possible outcomes having 1 trout caught. Hence, using (a), there are 1001 286 220 = 495 possible outcomes in which at least 2 of the 10 are trout.

Chapter 1 5

## **Theoretical Exercises**

- $\sum_{i=1}^{m} n_i$
- 3.  $n(n-1)\cdots(n-r+1) = n!/(n-r)!$
- 4. Each arrangement is determined by the choice of the *r* positions where the black balls are situated.
- 5. There are  $\binom{n}{j}$  different 0-1 vectors whose sum is j, since any such vector can be characterized by a selection of j of the n indices whose values are then set equal to 1. Hence there are  $\sum_{j=k}^{n} \binom{n}{j}$  vectors that meet the criterion.
- 6.  $\binom{n}{k}$
- 7.  $\binom{n-1}{r} + \binom{n-1}{r-1} = \frac{(n-1)!}{r!(n-1-r)!} + \frac{(n-1)!}{(n-r)!(r-1)!}$  $= \frac{n!}{r!(n-r)!} \left[ \frac{n-r}{n} + \frac{r}{n} \right] = \binom{n}{r}$
- 8. There are  $\binom{n+m}{r}$  groups of size r. As there are  $\binom{n}{i}\binom{m}{r-i}$  groups of size r that consist of i men and r-i women, we see that

$$\binom{n+m}{r} = \sum_{i=0}^{r} \binom{n}{i} \binom{m}{r-i}.$$

- 9.  ${2n \choose n} = \sum_{i=0}^{n} {n \choose i} {n \choose n-i} = \sum_{i=0}^{n} {n \choose i}^2$
- 10. Parts (a), (b), (c), and (d) are immediate. For part (e), we have the following:

$$k \binom{n}{k} = \frac{k!n!}{(n-k)!k!} = \frac{n!}{(n-k)!(k-1)!}$$
$$(n-k+1) \binom{n}{k-1} = \frac{(n-k+1)n!}{(n-k+1)!(k-1)!} = \frac{n!}{(n-k)!(k-1)!}$$
$$n \binom{n-1}{k-1} = \frac{n(n-1)!}{(n-k)!(k-1)!} = \frac{n!}{(n-k)!(k-1)!}$$

12. Number of possible selections of a committee of size k and a chairperson is  $k \binom{n}{k}$  and so

 $\sum_{k=1}^{n} k \binom{n}{k}$  represents the desired number. On the other hand, the chairperson can be anyone of

Chapter 1

the *n* persons and then each of the other n-1 can either be on or off the committee. Hence,  $n2^{n-1}$  also represents the desired quantity.

- (i)  $\binom{n}{k} k^2$
- (ii)  $n2^{n-1}$  since there are *n* possible choices for the combined chairperson and secretary and then each of the other n-1 can either be on or off the committee.
- (iii)  $n(n-1)2^{n-2}$
- (c) From a set of n we want to choose a committee, its chairperson its secretary and its treasurer (possibly the same). The result follows since
  - (a) there are  $n2^{n-1}$  selections in which the chair, secretary and treasurer are the same person.
  - (b) there are  $3n(n-1)2^{n-2}$  selection in which the chair, secretary and treasurer jobs are held by 2 people.
  - (c) there are  $n(n-1)(n-2)2^{n-3}$  selections in which the chair, secretary and treasurer are all different.
  - (d) there are  $\binom{n}{k}k^3$  selections in which the committee is of size k.

13. 
$$(1-1)^n = \sum_{i=0}^n \binom{n}{i} (-1)^{n-1}$$

14. (a) 
$$\binom{n}{j} \binom{j}{i} = \binom{n}{i} \binom{n-i}{j-i}$$

(b) From (a), 
$$\sum_{j=i}^{n} {n \choose j} {j \choose i} = {n \choose i} \sum_{j=i}^{n} {n-i \choose j-1} = {n \choose i} 2^{n-i}$$

(c) 
$$\sum_{j=i}^{n} {n \choose j} {j \choose i} (-1)^{n-j} = {n \choose i} \sum_{j=i}^{n} {n-i \choose j-1} (-1)^{n-j}$$
$$= {n \choose i} \sum_{k=0}^{n-i} {n-i \choose k} (-1)^{n-i-k} = 0$$

Chapter 1 7

15. (a) The number of vectors that have  $x_k = j$  is equal to the number of vectors  $x_1 \le x_2 \le ... \le x_{k-1}$  satisfying  $1 \le x_i \le j$ . That is, the number of vectors is equal to  $H_{k-1}(j)$ , and the result follows.

(b) 
$$H_2(1) = H_1(1) = 1$$

$$H_2(2) = H_1(1) + H_1(2) = 3$$

$$H_2(3) = H_1(1) + H_1(2) + H_1(3) = 6$$

$$H_2(4) = H_1(1) + H_1(2) + H_1(3) + H_1(4) = 10$$

$$H_2(5) = H_1(1) + H_1(2) + H_1(3) + H_1(4) + H_1(5) = 15$$

$$H_3(5) = H_2(1) + H_2(2) + H_2(3) + H_2(4) + H_2(5) = 35$$

- 16. (a) 1 < 2 < 3, 1 < 3 < 2, 2 < 1 < 3, 2 < 3 < 1, 3 < 1 < 2, 3 < 2 < 1, 1 = 2 < 3, 1 = 3 < 2, 2 = 3 < 1, 1 < 2 = 3, 2 < 1 = 3, 3 < 1 = 2, 1 = 2 = 3
  - (b) The number of outcomes in which i players tie for last place is equal to  $\binom{n}{i}$ , the number of ways to choose these i players, multiplied by the number of outcomes of the remaining n-i players, which is clearly equal to N(n-i).

(c) 
$$\sum_{i=1}^{n} {n \choose i} N(n-1) = \sum_{i=1}^{n} {n \choose n-i} N(n-i)$$
  
=  $\sum_{i=0}^{n-1} {n \choose j} N(j)$ 

where the final equality followed by letting j = n - i.

(d) 
$$N(3) = 1 + 3N(1) + 3N(2) = 1 + 3 + 9 = 13$$
  
 $N(4) = 1 + 4N(1) + 6N(2) + 4N(3) = 75$ 

- 17. A choice of r elements from a set of n elements is equivalent to breaking these elements into two subsets, one of size r (equal to the elements selected) and the other of size n r (equal to the elements not selected).
- 18. Suppose that r labeled subsets of respective sizes  $n_1, n_2, ..., n_r$  are to be made up from elements 1, 2, ..., n where  $n = \sum_{i=1}^{r} n_i$ . As  $\binom{n-1}{n_1, ..., n_i 1, ... n_r}$  represents the number of possibilities when person n is put in subset i, the result follows.

8

Chapter 1

$$(x_1 + x_2 + \dots + x_r)^n$$

$$= \sum_{i_1=0}^n \binom{n}{i_1} x_1^{i_1} (x_2 + \dots + x_r)^{n-i_1} \text{ by the Binomial theorem}$$

$$= \sum_{i_1=0}^n \binom{n}{i_1} x_1^{i_1} \sum_{i_2,\dots,i_r} \binom{n-i_1}{i_2,\dots,i_r} x_1^{i_2} \dots x_r^{i_r}$$

$$= \sum_{i_1=0}^n \binom{n}{i_1} x_1^{i_1} \sum_{i_2,\dots,i_r} \binom{n-i_1}{i_2,\dots,i_r} x_1^{i_2} \dots x_r^{i_r}$$

$$= \sum_{i_1,...,i_r} \sum_{\substack{i_1,...,i_r \\ i_1+i_2+...+i_r = n}} \binom{n}{i_1,...,i_r} x_1^{i_1} ... x_r^{i_r}$$

where the second equality follows from the induction hypothesis and the last from the identity  $\binom{n}{i_1}\binom{n-i_1}{i_2,...,i_n} = \binom{n}{i_1,...,i_r}$ .

20. The number of integer solutions of

$$x_1 + \ldots + x_r = n, x_i \ge m_i$$

is the same as the number of nonnegative solutions of

$$y_1 + \dots + y_r = n - \sum_{i=1}^{r} m_i, y_i \ge 0.$$

Proposition 6.2 gives the result  $\begin{pmatrix} n - \sum_{i=1}^{r} m_i + r - 1 \\ r - 1 \end{pmatrix}$ .

21. There are  $\binom{r}{k}$  choices of the k of the x's to equal 0. Given this choice the other r-k of the x's must be positive and sum to n.

By Proposition 6.1, there are  $\binom{n-1}{r-k-1} = \binom{n-1}{n-r+k}$  such solutions.

Hence the result follows.

22.  $\binom{n+r-1}{n-1}$  by Proposition 6.2.

23. There are  $\binom{j+n-1}{j}$  nonnegative integer solutions of

$$\sum_{i=1}^{n} x_i = j$$

Hence, there are  $\sum_{j=0}^{k} {j+n-1 \choose j}$  such vectors.